Подпишись и читай
самые интересные
статьи первым!

Закон гомологичных рядов вавилова формулировка. Закон гомологических рядов наследственной изменчивости организмов

Изучение наследственной изменчивости у различных систематических групп растений позволило Н. И. Вавилову сформулировать закон гомологических рядов .

Этот закон гласит:

«1. Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе генетически расположены в общей системе роды и линнеоны (виды) у тем полнее сходство в рядах их изменчивости.

2. Целые семейства растений в общем характеризуются определенным циклом изменчивости, проходящей через все роды и виды, составляющие семейство».

Свой закон Н. И. Вавилов выразил формулой:

G 1 (a + b + c + … +),

G 2 (a + b + c + … +),

G 3 (a + b + c + … +),

где G 1 , G 2 , G 3 обозначают виды и а, b, с… - различные варьирующие признаки, например окраску, форму стеблей, листьев, семян и др.

Иллюстрацией к закону может служить таблица, где показана гомология наследственной изменчивости по некоторым признакам и свойствам в пределах семейства злаковых. Но этот перечень признаков и свойств можно было бы значительно расширить.

В настоящее время с полным основанием можно сказать, что у родственных видов, имеющих общее происхождение, возникают и сходные мутации. Более того, даже у представителей разных классов и типов животных мы встречаем параллелизм - гомологические ряды мутаций по морфологическим, физиологическим и особенно биохимическим признакам и свойствам. Так, например, у разных классов позвоночных животных встречаются сходные мутации: альбинизм и бесшерстность у млекопитающих, альбинизм и отсутствие перьев у птиц, отсутствие чешуи у рыб, короткопалость у крупного рогатого скота, овец, собак, птиц и т. д.

Гомологические ряды мутационной изменчивости биохимических признаков встречаются не только у высших организмов, но и у простейших и микроорганизмов. Приведены данные по биохимическим мутантам, которые можно трактовать как гомологический ряд. В таблице приведены данные по биохимическим мутантам, которые можно трактовать как гомологический ряд.

Как мы видим, накопление сходных веществ (триптофана или кинуренина), детерминированных генами, встречается в весьма различных группах животных: у двукрылых, перепончатокрылых и бабочек. При этом биосинтез пигментов достигается сходным путем.

Исходя из закона гомологических рядов следует принять, что если обнаруживается ряд спонтанных или индуцированных мутации у одного вида животного или растения, то можно ожидать сходный ряд мутаций и у других видов этого рода. То же относится и к более высоким систематическим категориям. Причиной этого является общность происхождения генотипов.

Наиболее вероятное объяснение происхождения гомологических рядов наследственной изменчивости сводится к следующему. Родственные виды внутри одного рода, роды внутри одного отряда или семейства могли возникнуть посредством отбора различных полезных мутаций отдельных общих генов, отбора форм с различными полезными xpомосомными перестройками. В этом случае родственные виды, разошедшиеся в эволюции за счет отбора разных хромосомных перестроек, могли нести гомологичные гены, как исходные, так и мутантные. Виды могли возникать также путем отбора спонтанных полиплоидов, содержащих однородные наборы хромосом. Дивергенция видов, идущая на основе этих трех типов наследственной изменчивости, обеспечивает общность генетического материала у родственных систематических групп. Но в действительности дело обстоит, конечно, сложнее, чем нам это сейчас представляется.

Быть может, биохимические исследования хромосом, изучение их строения и роли ДНК как материального носителя наследственной информации приоткроют завесу над этим еще не познанным явлением гомологии и аналогии путей развития органических форм.

Если нуклеиновые кислоты в комплексе с белком являются тем первичным субстратом, который обеспечил с самых ранних этапов программирование эволюции живых систем, то закон гомологических рядов приобретает всеобщее значение как закон возникновения аналогичных рядов биологических механизмов и процессов, совершающихся в органической природе. Это относится как к морфологии тканей, их функциональным свойствам, биохимическим процессам, адаптационным механизмам и т. д., так и к генетическим механизмам всех живых организмов. Аналогия наблюдается для всех основных генетических явлений:

  • деления клетки,
  • механизма митоза,
  • механизма репродукции хромосом,
  • механизма мейоза,
  • оплодотворения,
  • механизма рекомбинации,
  • мутирования и т. д.

Живая природа в процессе эволюции как бы программировалась по одной формуле независимо от времени происхождения того или иного типа организмов. Конечно, подобные гипотетические соображения требуют подтверждения на основе синтеза многих знаний, но очевидно, что решение этой увлекательной проблемы является делом текущего века. Она должна заставить исследователей искать не столько частные различия, характеризующие дивергенцию видов, сколько их общие черты, в основе которых лежат аналогичные генетические механизмы.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Закон гомологических рядов Вавилова

Важным теоретическим обобщением исследований Н. И. Вавилова является разработанное им учение о гомологических рядах. Согласно сформулированному им закону гомологических рядов наследственной изменчивости, не только близкие в генетическом отношении виды, но и роды растений образуют гомологические ряды форм, т. е. в генетической изменчивости видов и родов существует определенный параллелизм. Близкие виды благодаря большому сходству их генотипов (почти одинаковому набору генов) обладают сходной наследственной изменчивостью. Если все известные вариации признаков у хорошо изученного вида расположить в определенном порядке, то и у других родственных видов можно обнаружить почти все те же вариации изменчивости признаков. Например, приблизительно одинакова изменчивость остистости колоса у мягкой, твердой пшеницы и ячменя.

Трактовка Н.И.Вавилова. Виды и роды генетически близкие характеризуются сходными рядами наследственной изменчивости, с такой правильностью, что, зная ряд форм в пределах одного вида можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе родство, тем полнее сходство в рядах изменчивости.

Современная трактовка закона

Родственные виды, роды, семейства обладают гомологичными генами и порядками генов в хромосомах, сходство которых тем полнее, чем эволюционно ближе сравниваемые таксоны. Гомология генов у родственных видов проявляется в сходстве рядов их наследственной изменчивости (1987 г.).

Значение закона

1. Закон гомологических рядов наследственной изменчивости позволяет находить нужные признаки и варианты в почти бесконечном многообразии форм различных видов как культурных растений и домашних животных, так и их диких родичей.

2. Он дает возможность успешно осуществлять поиск новых сортов культурных растений и пород домашних животных с теми или иными требуемыми признаками. В этом заключается огромное практическое значение закона для растениеводства, животноводства и селекции.



3. Его роль в географии культурных растений сопоставима с ролью Периодической системы элементов Д. И. Менделеева в химии. Применяя закон гомологических рядов, можно установить центр происхождения растений по родственным видам со сходными признаками и формами, которые развиваются, вероятно, в одной и той же географической и экологической обстановке.

Билет 4

Наследование признаков при расхождении половых хромосом(первичное и вторичное нерасхождение Х-хромосом у дрозофиллы)

Как отмечалось ранее, при скрещивании белоглазой самки дрозофилы с красноглазым самцом вF1 все дочери имеют красные глаза, а у всех сыновей, получающих свою единственную Х -хромосому от матери, глаза белые. Однако иногда в таком скрещивании проявляются единичные красноглазые самцы и белоглазые самки, так называемые исключительные мухи с частотой 0,1-0,001%. Бриджес предположил, что появление таких «исключительных особей» объясняется тем, что у их матери во время мейоза обе Х-хромосомы попали в одно яйцо, т.е. произошло нерасхождение Х -хромосом. Каждое из таких яиц может быть оплодотворено либо спермием с Х -хромосомой, либо Y -хромосомой. В результате может образоваться 4 типа зигот: 1) с тремя Х -хромосомами –ХХХ ; 2) с двумя материнскими Х -хромосомами и Y -хромосомойХХY ; 3) с одной отцовской Х -хромосомой; 4) без Х -хромосомы, но с Y –хромосомой.

ХХY являются нормальными плодовитыми самками. ХО -самцы, но стерильны. Это показывает, что у дрозофилы Y -хромосома не содержит генов, определяющих пол. При скрещивании ХХY самок с нормальными красноглазыми самцами (XY ) Бриджес обнаружил среди потомства 4% белоглазых самок и 4% красноглазых самцов. Остальная часть потомства состояла из красноглазых самок и белоглазых самцов. Появление подобных исключительных особей автор объяснил вторичным нерасхождением Х -хромосом в мейозе, потому что самки, взятые в скрещивании (XXY ), возникли вследствие первичного нерасхождения хромосом. Вторичное нерасхождение хромосом у таких самок в мейозе наблюдается в 100 раз чаще, чем первичное.

У ряда других организмов, в том числе у человека, также известно нерасхождение половых хромосом. Из 4-х типов потомков, получающихся при нерасхождении Х -хромосом у женщин, особи, не имеющие ни одной Х -хромосомы, погибают в течение эмбрионального развития. Зиготы ХХХ развиваются у женщин, у которых чаще обычного встречаются умственные дефекты и бесплодие. Из зигот ХХY развиваются неполноценные мужчины – синдром Клайнфельтера – бесплодие, умственная отсталость, евнухоидное телосложение. Потомки с одной Х -хромосомой чаще погибают в эмбриональном развитии, редкие выжившие – женщины с синдромом Шерешевского-Тернера. Они низкого роста, инфантильны, бесплодны. У человека Y -хромосомы содержат гены, определяющие развитие организма мужского пола. При отсутствии Y -хромосомы развитие идёт по женскому типу. Нерасхождение половых хромосом у человека происходит чаще, чем у дрозофилы; в среднем на каждые 600 родившихся мальчиков приходится один с синдромом Клайнфельтера.

Деятельность Н. И. Вавилова

Выдающийся советский ученый-генетик Николай Иванович Вавилов внес большой вклад в развитие отечественной науки. Под его руководством воспитывалась целая плеяда видных отечественных ученых. Исследования, проводившиеся Н.И.Вавиловым и его учениками, дали возможность сельскохозяйственной науке овладеть новыми методами поиска диких видов растений в качестве исходного материала для селекции, заложили теоретические основы советской селекции.

Замечание 1

На основе огромного количества собранного коллекционного материала было сформулировано учение о центрах происхождения культурных растений. А образцы посевного материала, собранные Вавиловым и его соратниками, обеспечили широкий фронт генетических исследований и селекционной работы.

Именно благодаря анализу собранных материалов был сформулирован знаменитый закон гомологических рядов.

Суть закона гомологических рядов наследственной изменчивости

В ходе многолетнего изучения диких и культурных форм растительности на пяти материках Н.И. Вавилов сделал вывод, что изменчивость близких по происхождению видов и родов осуществляется сходными путями. При этом образуются так называемые ряды изменчивости. Эти ряды изменчивости настолько правильные, что, зная ряд признаков и форм в пределах одного вида можно предвидеть нахождение этих качеств у других видов и родов. Чем ближе родство, тем полнее сходство в рядах изменчивости.

Например, у арбуза, тыквы и дыни форма плода может быть овальной, круглой, шарообразной, цилиндрической. Окраска плода может быть светлой, темной, полосатой или пятнистой. Листья у всех трех видов растений могут быть цельными или глубокорассеченными.

Если рассматривать злаки, то из $38$ исследуемых признаков, характерных для злаков:

  • у ржи и у пшеницы обнаружено $37$,
  • у ячменя и овса - $35$,
  • у кукурузы и риса – $32$,
  • у проса – $27$.

Знание этих закономерностей позволяет предвидеть проявление определенных признаков у одних растений. На примере проявления этих признаков у других, родственных им растений.

В современной трактовке формулировка данного закона гомологических рядов наследственной изменчивости выглядит следующим образом:

«Родственные виды, роды, семейства обладают гомологичными генами и порядками генов в хромосомах, сходство которых тем полнее, чем эволюционно ближе сравниваемые таксоны».

Эту закономерность Вавилов установил для растений. Но последующие исследования показали, что закон имеет универсальный характер.

Генетическая основа закона гомологических рядов наследственности

Генетической основой выше упомянутого закона является то обстоятельство, что в сходных условиях близкородственные организмы могут одинаково реагировать на факторы внешней среды. А биохимические процессы у них протекают приблизительно одинаково. Эту закономерность можно сформулировать таким образом:

«Степень исторической общности организмов прямо пропорциональна количеству общих генов у групп, которые сравниваются».

Так как генотип близкородственных организмов подобен, то и изменения этих генов в ходе мутаций могут быть подобными. Внешне (фенотипически) это проявляется как одинаковый характер изменчивости у близких видов, родов и т.п.

Значение закона гомологических рядов наследственности

Закон гомологических рядов имеет большое значение как для развития теоретической науки, так для практического применения в сельскохозяйственном производстве. Он дает ключ к пониманию направления и путей эволюции родственных групп живых организмов. В селекции на его основе планируют создание новых сортов растений и пород домашних животных с определенной совокупностью признаков, на основе изучения наследственной изменчивости близких видов.

В систематике организмов этот закон позволяет находить новые ожидаемые формы организмов (виды, роды, семейства) с определенной совокупностью признаков при условии, если подобная совокупность была обнаружена у родственных систематических группах.

Гомологических рядов в наследственной изменчивости закон гомологи́ческих рядо́в в насле́дственной изме́нчивости зако́н

Открытая рус. генетиком Н.И. Вавиловым в 1920 г. закономерность, устанавливающая параллелизм (сходство) в наследственной (генотипической) изменчивости у родственных организмов. В формулировке Вавилова закон гласит: «Виды и роды, генетически близкие между собой, характеризуются тождественными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм для одного вида, можно предвидеть нахождение тождественных форм у других видов и родов». При этом, чем ближе родство между видами, тем полнее сходство (гомология) в рядах их изменчивости. В законе обобщён огромный материал по изменчивости растений (злаков и других семейств), но он оказался справедливым и для изменчивости животных и микроорганизмов.
Явление параллельной изменчивости у близких родов и видов объясняется общностью их происхождения и, следовательно, наличием у них в генотипах значительной части одинаковых генов, полученных от общего предка и не изменившихся в процессе видообразования. При мутациях эти гены дают сходные признаки. Параллелизм в генотипической изменчивости у родственных видов проявляется параллелизмом фенотипической изменчивости, т.е. сходными признаками (фенотипами ).
Закон Вавилова является теоретической основой при выборе направлений и методов для получения хозяйственно-ценных признаков и свойств у культурных растений и домашних животных.

.(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.)


Смотреть что такое "гомологических рядов в наследственной изменчивости закон" в других словарях:

    См. Гомологических рядов в наследственной изменчивости закон. .(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.) …

    Устанавливает параллелизм в наследств, изменчивости организмов. Сформулирован Н. И. Вавиловым в 1920. Изучая изменчивость признаков у видов и родов злаков и др. семейств, Н. И. Вавилов обнаружил, что: 1. Виды и роды, генетически близкие между… … Биологический энциклопедический словарь

    Изменчивости, разработанный советским учёным Н. И. Вавиловым закон, устанавливающий параллелизм в изменчивости организмов. Ещё Ч. Дарвин (1859 68) обратил внимание на далеко идущий параллелизм в изменчивости (См. Изменчивость) близких… … Большая советская энциклопедия

    Гомологические ряды в наследственной изменчивости понятие, введенное Н. И. Вавиловым при исследовании параллелизмов в явлениях наследственной изменчивости по аналогии с гомологическими рядами органических соединений. Закономерности в… … Википедия

    ЗАКОН ГОМОЛОГИЧЕСКИХ РЯДОВ - открытый Н. И. Вавиловым (1920) закон, согласно которому изменчивость близких по происхождению родов и видов растений осуществляется общим (параллельным) путем. Генетически близкие роды и виды характеризуются сходными рядами наследственной… … Экологический словарь

    В наследственной изменчивости сформулирован Н. И. Вавиловым в 1920, устанавливает параллелизм в изменчивости родственных групп растений. Как было показано позже, в основе этого явления лежит гомология генов (их одинаковое молекулярное строение) и … Большой Энциклопедический словарь

    В наследственной изменчивости, сформулирован Н. И. Вавиловым в 1920, устанавливает параллелизм в изменчивости родственных групп растений. Как было показано позже, в основе этого явления лежит гомология генов (их одинаковое молекулярное строение)… … Энциклопедический словарь

    гомологических рядов закон - в наследственной изменчивости, устанавливает параллелизм в наследств, изменчивости организмов. Открыт советским учёным Н. И. Вавиловым в 1920. Изучая изменчивость признаков у видов и родов семейства мятликовых и др., Вавилов обнаружил, что… … Сельское хозяйство. Большой энциклопедический словарь

    В наследственной изменчивости, сформулирован Н. И. Вавиловым в 1920, устанавливает параллелизм в изменчивости родственных групп р ний. Как было показано позлее, в основе этого явления лежит гомология генов (их одинаковое мол. строение) и… … Естествознание. Энциклопедический словарь

Книги

  • Закон гомологических рядов в наследственной изменчивости , Н. И. Вавилов. В книге впервые публикуются все три издания "Закона гомологических рядов в наследственной изменчивости", в том числе и английское 1922 г. Включены также работы, которые выходили только один…

Гомологические ряды в наследственной изменчивости - понятие, введенное Н. И. Вавиловым при исследовании параллелизмов в явлениях наследственной изменчивости по аналогии с гомологическими рядами органических соединений.

Закон гомологичных рядов : Генетически близкие виды и роды характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов.

Закономерности в полиморфизме у растений, установленные путем детального изучения изменчивости различных родов и семейств, можно условно до некоторой степени сравнить с гомологическими рядами органической химии, например с углеводородами (CH 4 , C 2 H 6 , C 3 H 8 …).

Суть явления состоит в том, что при изучении наследственной изменчивости у близких групп растений были обнаружены сходные аллельные формы, которые повторялись у разных видов (например, узлы соломины злаков с антоциановой окраской или без, колосья с остью или без и т. п.). Наличие такой повторяемости давало возможность предсказывать наличие ещё не обнаруженных аллелей, важных с точки зрения селекционной работы. Поиск растений с такими аллелями проводился в экспедициях в предполагаемые центры происхождения культурных растений . Следует помнить, что в те годы искусственная индукция мутагенеза химическими веществами или воздействием ионизирующих излучений ещё не была известна, и поиск необходимых аллелей приходилось производить в природных популяциях .

Н. И. Вавилов рассматривал сформулированный им закон как вклад в популярные в то время представления о закономерном характере изменчивости, лежащей в основе эволюционного процесса (например, теория номогенеза Л. С. Берга ). Он полагал, что закономерно повторяющиеся в разных группах наследственные вариации лежат в основе эволюционных параллелизмов и явления мимикрии .

В 70-80-х годах XX века к закону гомологических рядов обратился в своих трудах Медников Б. М. , написавший ряд работ, в которых показал, что именно такое объяснение возникновения сходных, часто до мелочей, признаков в родственных таксонах вполне состоятельно.

Родственные таксоны часто имеют родственные генетические последовательности, слабо различающиеся в принципе, а некоторые мутации возникают с большей вероятностью и проявляются в целом сходно у представителей разных, но родственных, таксонов. Как пример приводятся двувариантная фенотипически ярко выраженная мутация строения черепа и организма в целом: акромегалия и акромикрия , за которые отвечает в конечном счете мутация, изменяющая баланс, своевременное «включение» или «выключение» в ходе онтогенеза гормонов соматотропина и гонадотропина .

Учение о центрах происхождения культурных растений

Учение о центрах происхождения культурных растений сформировалось на основе идей Ч. Дарвина («Происхождение видов», гл. 12, 1859) о существовании географических центров происхождения биологических видов. В 1883 А. Декандоль опубликовал труд, в котором установил географические области начального происхождения главнейших культурных растений. Однако эти области были приурочены к целым континентам или к др. также достаточно обширным территориям. В течение полувека после выхода книги Декандоля познания в области происхождения культурных растений значительно расширились; вышли монографии, посвященные культурным растениям различных стран, а также отдельным растениям. Наиболее планомерно эту проблему разрабатывал в 1926-39 Н. И. Вавилов. На основании материалов о мировых растительных ресурсах он выделял 7 основных географических центров происхождения культурных растений.

1. Южноазиатский тропический центр (около 33 % от общего числа видов культурных растений).

2. Восточноазиатский центр (20 % культурных растений).

3. Юго-Западноазиатский центр (4 % культурных растений).

4. Средиземноморский центр (примерно 11 % видов культурных растений).

5. Эфиопский центр (около 4 % культурных растений).

6. Центральноамериканский центр (примерно 10 %)

7. Андийский (Южноамериканский) центр (около 8 %)

Центры происхождения культурных растений: 1. Центральноамериканский, 2. Южноамериканский, 3. Средиземноморский, 4. Переднеазиатский, 5. Абиссинский, 6. Среднеазиатский, 7. Индостанский, 7A. Юго-восточноазиатский, 8. Восточноазиатский.

Многие исследователи, в том числе П. М. Жуковский, Е. Н. Синская, А. И. Купцов, продолжая работы Вавилова, внесли в эти представления свои коррективы. Так, тропическую Индию и Индокитай с Индонезией рассматривают как два самостоятельных центра, а Юго-Западноазиатский центр разделён на Среднеазиатский и Переднеазиатский, основой Восточно-азиатского центра считают бассейн Хуанхэ, а не Янцзы, куда китайцы как народ-земледелец проникли позднее. Установлены также центры древнего земледелия в Западном Судане и на Новой Гвинее. Плодовые культуры (в том числе ягодные и орехоплодные), имея более обширные ареалы распространения, выходят далеко за пределы центров происхождения, более согласуясь с представлениями Декандоля. Причина этого заключается в преимущественно лесном происхождении (а не предгорном как для овощных и полевых культур), а также в особенностях селекции. Выделены новые центры: Австралийский, Североамериканский, Европейско-Сибирский.

Некоторые растения введены в прошлом в культуру и вне этих основных центров, но число таких растений невелико. Если ранее считалось, что основные очаги древних земледельческих культур - широкие долины Тигра , Евфрата , Ганга , Нила и других крупных рек, то Вавилов показал, что почти все культурные растения появились в горных районах тропиков, субтропиков и умеренного пояса. Основные географические центры начального введения в культуру большинства возделываемых растений связаны не только с флористическим богатством, но и с древнейшими цивилизациями.

Установлено, что условия, в которых происходила эволюция и селекция культуры, накладывают требования к условиям её произрастания. Прежде всего это влажность, длина дня, температура, продолжительность вегетации.

Включайся в дискуссию
Читайте также
Майонез с лимонным соком
Свекла на зиму в банках: рецепт без стерилизации
Курица с сыром: салаты и курица запеченная с сыром в духовке