สมัครสมาชิกและอ่าน
สิ่งที่น่าสนใจที่สุด
บทความก่อน!

คำจำกัดความของฟังก์ชันที่มีขอบเขตด้านล่าง ขีดจำกัดของฟังก์ชันโมโนโทนิก

บทเรียนและการนำเสนอในหัวข้อ: "คุณสมบัติของฟังก์ชัน การเพิ่มและลดฟังก์ชัน"

วัสดุเพิ่มเติม
เรียนผู้ใช้ อย่าลืมแสดงความคิดเห็น บทวิจารณ์ และความปรารถนาของคุณ! วัสดุทั้งหมดได้รับการตรวจสอบโดยโปรแกรมป้องกันไวรัส

เครื่องช่วยการศึกษาและเครื่องจำลองในร้านค้าออนไลน์ Integral สำหรับชั้นประถมศึกษาปีที่ 9
หนังสือเรียนแบบโต้ตอบสำหรับเกรด 9 "กฎและแบบฝึกหัดทางเรขาคณิต"
หนังสือเรียนอิเล็กทรอนิกส์ "เรขาคณิตที่เข้าใจได้" สำหรับเกรด 7-9

พวกเรายังคงศึกษาฟังก์ชันตัวเลขต่อไป วันนี้เราจะเน้นในหัวข้อเช่นคุณสมบัติของฟังก์ชัน ฟังก์ชั่นมีคุณสมบัติมากมาย จำคุณสมบัติที่เราศึกษาล่าสุด ถูกต้อง โดเมนของคำจำกัดความและโดเมนของค่า พวกมันเป็นหนึ่งในคุณสมบัติหลัก อย่าลืมเกี่ยวกับสิ่งเหล่านี้และจำไว้ว่าฟังก์ชันจะมีคุณสมบัติเหล่านี้เสมอ

ในส่วนนี้ เราจะกำหนดคุณสมบัติบางอย่างของฟังก์ชัน ฉันแนะนำให้ทำตามลำดับที่เราจะพิจารณาเมื่อแก้ไขปัญหา

ฟังก์ชั่นการเพิ่มและลด

คุณสมบัติแรกที่เราจะกำหนดคือฟังก์ชันที่เพิ่มขึ้นและลดลง

กล่าวกันว่าฟังก์ชันจะเพิ่มขึ้นบนเซต X⊂D(f) ถ้าสำหรับ x1 และ x2 ใดๆ ที่ทำให้ x1< x2 - выполняется неравенство f(x1) < f(x2). То есть большему значению аргумента, соответствует большее значение функции.
ฟังก์ชันบอกว่าจะลดลงบนเซต X⊂D(f) ถ้าสำหรับ x1 และ x2 ใดๆ ก็ตามที่ x1< x2 - выполняется неравенство f(x1)>ฉ(x2) นั่นคือค่าที่มากกว่าของอาร์กิวเมนต์จะสอดคล้องกับค่าที่น้อยกว่าของฟังก์ชัน

แนวคิดเรื่อง "การเพิ่มขึ้น" และ "การลดลง" ของฟังก์ชันนั้นง่ายต่อการเข้าใจหากคุณดูกราฟของฟังก์ชันอย่างละเอียด หน้าที่ที่เพิ่มขึ้น ดูเหมือนเราจะขึ้นเนิน หน้าที่ลดลง เราก็จะลงตาม แบบฟอร์มทั่วไปฟังก์ชันการเพิ่มและลดจะแสดงอยู่ในกราฟด้านล่าง




ฟังก์ชั่นการเพิ่มและลดโดยทั่วไปเรียกว่าความน่าเบื่อนั่นคืองานของเราคือค้นหาช่วงของการลดลงและการเพิ่มขึ้นของฟังก์ชัน ในกรณีทั่วไป จะมีสูตรดังนี้: ค้นหาช่วงเวลาของความน่าเบื่อหรือตรวจสอบฟังก์ชันเพื่อหาความน่าเบื่อ

ตรวจสอบความซ้ำซ้อนของฟังก์ชัน $y=3x+2$
วิธีแก้: ลองตรวจสอบฟังก์ชันของ x1 และ x2 ใดๆ แล้วปล่อยให้ x1 กัน< x2.
$ฟ(x1)=3x1+2$
$ฟ(x2)=3x2+2$
เนื่องจาก, x1< x2, то f(x1) < f(x2), т. е. большему значению аргумента, соответствует большее значение функции.

ฟังก์ชั่นจำกัด

ฟังก์ชัน $y=f(x)$ ถูกจำกัดขอบเขตจากด้านล่างของเซต X⊂D(f) หากมีตัวเลข a ที่ทำให้สำหรับ хϵMX ใดๆ ก็ตาม จะมีอสมการ f(x) อยู่< a.

ฟังก์ชัน $y=f(x)$ ถูกจำกัดขอบเขตจากด้านบนบนเซต X⊂D(f) หากมีตัวเลข a ที่สำหรับ хϵH ใดๆ ก็ตาม จะมีอสมการ f(x) อยู่< a.

หากไม่ได้ระบุช่วงเวลา X ฟังก์ชันจะถือว่าถูกจำกัดในขอบเขตคำจำกัดความทั้งหมด ฟังก์ชันที่มีขอบเขตทั้งด้านบนและด้านล่างเรียกว่าขอบเขต

ข้อจำกัดของฟังก์ชันสามารถอ่านได้ง่ายจากกราฟ สามารถวาดเส้นตรงได้
$у=а$ และหากฟังก์ชันสูงกว่าบรรทัดนี้ แสดงว่าฟังก์ชันนั้นถูกผูกไว้จากด้านล่าง ถ้าด้านล่างก็ด้านบนตามนั้น ด้านล่างเป็นกราฟของฟังก์ชันที่ล้อมรอบด้านล่าง เพื่อนๆ ลองวาดกราฟของฟังก์ชันจำกัดด้วยตัวเองดู


ตรวจสอบขอบเขตของฟังก์ชัน $y=\sqrt(16-x^2)$
วิธีแก้: รากที่สองของจำนวนหนึ่งมีค่ามากกว่าหรือเท่ากับศูนย์ แน่นอนว่าฟังก์ชันของเรามีค่ามากกว่าหรือเท่ากับศูนย์ด้วย นั่นคือขอบเขตจากด้านล่าง
เราสามารถแยกรากที่สองออกจากจำนวนที่ไม่เป็นลบเท่านั้น จากนั้นจึง $16-x^2≥0$
วิธีแก้อสมการของเราคือช่วง [-4;4] ในส่วนนี้ $16-x^2≤16$ หรือ $\sqrt(16-x^2)≤4$ แต่นี่หมายถึงมีขอบเขตจากด้านบน
คำตอบ: ฟังก์ชั่นของเราจำกัดอยู่เพียงสองเส้นตรง $y=0$ และ $y=4$

มูลค่าสูงสุดและต่ำสุด

ค่าที่น้อยที่สุดของฟังก์ชัน y= f(x) บนเซต X⊂D(f) คือตัวเลขบางตัว m โดยที่:

b) สำหรับการถือครอง $f(x)≥f(x0)$ ใดๆ

ค่าที่ใหญ่ที่สุดของฟังก์ชัน y=f(x) บนเซต X⊂D(f) คือตัวเลขบางตัว m โดยที่:
ก) มี x0 อยู่จำนวนหนึ่งที่ $f(x0)=m$
b) สำหรับการถือครอง $f(x)≤f(x0)$ ใดๆ

ค่าที่ใหญ่ที่สุดและเล็กที่สุดมักจะแสดงด้วย y max และชื่อของคุณ .

แนวคิดเรื่องขอบเขตและค่าที่ใหญ่ที่สุดที่มีค่าน้อยที่สุดของฟังก์ชันมีความสัมพันธ์กันอย่างใกล้ชิด ข้อความต่อไปนี้เป็นจริง:
ก) หากมีค่าต่ำสุดสำหรับฟังก์ชัน ค่านั้นจะมีขอบเขตอยู่ด้านล่าง
b) หากฟังก์ชันมีค่ามากที่สุด แสดงว่าฟังก์ชันนั้นถูกผูกไว้ด้านบน
c) ถ้าฟังก์ชันไม่ได้ถูกผูกไว้ด้านบน แสดงว่าไม่มีค่าที่ยิ่งใหญ่ที่สุดอยู่
d) ถ้าฟังก์ชันไม่มีขอบเขตด้านล่าง แสดงว่าไม่มีค่าที่น้อยที่สุด

ค้นหาค่าที่ใหญ่ที่สุดและน้อยที่สุดของฟังก์ชัน $y=\sqrt(9-4x^2+16x)$
วิธีแก้: $f(x)=y=\sqrt(9-4x^2+16x)=\sqrt(9-(x-4)^2+16)=\sqrt(25-(x-4)^2 )≤5$.
สำหรับ $х=4$ $f(4)=5$ สำหรับค่าอื่น ๆ ทั้งหมดฟังก์ชันจะใช้ค่าที่น้อยกว่าหรือไม่มีอยู่นั่นคือนี่คือค่าที่ใหญ่ที่สุดของฟังก์ชัน
ตามคำจำกัดความ: $9-4x^2+16x≥0$ เรามาค้นหารากกันดีกว่า ตรีโกณมิติกำลังสอง$(2х+1)(2х-9)≥0$. ที่ $x=-0.5$ และ $x=4.5$ ฟังก์ชันจะหายไป ที่จุดอื่นๆ ทั้งหมดมีค่ามากกว่าศูนย์ จากนั้น ตามคำนิยาม ค่าที่น้อยที่สุดของฟังก์ชันจะเท่ากับศูนย์
คำตอบ: ใช่สูงสุด =5 และชื่อ y =0.

พวกเรายังได้ศึกษาแนวคิดเรื่องความนูนของฟังก์ชันด้วย เมื่อแก้ไขปัญหาบางอย่าง เราอาจต้องการคุณสมบัตินี้ คุณสมบัตินี้สามารถกำหนดได้อย่างง่ายดายโดยใช้กราฟ

ฟังก์ชันจะนูนลงถ้ามีจุดสองจุดบนกราฟของฟังก์ชันเดิมเชื่อมต่อกัน และกราฟของฟังก์ชันอยู่ต่ำกว่าเส้นเชื่อมต่อจุดนั้น

ฟังก์ชันจะนูนขึ้นถ้ามีจุดสองจุดบนกราฟของฟังก์ชันเดิมเชื่อมต่อกัน และกราฟของฟังก์ชันอยู่เหนือเส้นเชื่อมต่อจุดนั้น



ฟังก์ชันจะมีความต่อเนื่องถ้ากราฟของฟังก์ชันของเราไม่มีการหยุดพัก เช่น กราฟของฟังก์ชันด้านบน

หากคุณต้องการค้นหาคุณสมบัติของฟังก์ชัน ลำดับการค้นหาคุณสมบัติจะเป็นดังนี้:
ก) โดเมนของคำจำกัดความ
b) ความซ้ำซากจำเจ
ค) ข้อจำกัด
d) ค่าที่ใหญ่ที่สุดและน้อยที่สุด
ง) ความต่อเนื่อง
จ) ช่วงของค่า

ค้นหาคุณสมบัติของฟังก์ชัน $y=-2x+5$
สารละลาย.
ก) โดเมนของคำจำกัดความ D(y)=(-∞;+∞)
b) ความซ้ำซากจำเจ ลองตรวจสอบค่าใดๆ x1 และ x2 แล้วปล่อยให้ x1< x2.
$ฟ(x1)=-2x1+2$.
$ฟ(x2)=-2x2+2$.
ตั้งแต่ x1< x2, то f(x1) < f(x2), то есть большему значению аргумента, соответствует меньшее значение функции. Функция убывает.
ค) ข้อจำกัด แน่นอนว่าฟังก์ชันนี้ไม่จำกัด
d) ค่าที่ใหญ่ที่สุดและน้อยที่สุด เนื่องจากฟังก์ชันไม่มีขอบเขต จึงไม่มีค่าสูงสุดหรือต่ำสุด
ง) ความต่อเนื่อง กราฟของฟังก์ชันของเราไม่มีการหยุดพัก จากนั้นฟังก์ชันจะต่อเนื่องกัน
จ) ช่วงของค่า E(y)=(-∞;+∞)

ปัญหาเกี่ยวกับคุณสมบัติของฟังก์ชันสำหรับการแก้ปัญหาอิสระ

ค้นหาคุณสมบัติของฟังก์ชัน:
ก) $y=2x+7$,
ข) $y=3x^2$,
ค) $y=\frac(4)(x)$

เราจะเรียกใช้ฟังก์ชัน y=f(x) BOUNDED UPPER (BOTTOM) บนเซต A จากโดเมนของคำจำกัดความ D(f) หากมีตัวเลขดังกล่าวอยู่ ว่าสำหรับ x ใดๆ จากเซตนี้ เงื่อนไขจะเป็นที่พอใจ

การใช้สัญลักษณ์เชิงตรรกะ สามารถเขียนคำจำกัดความได้เป็น:

ฉ(x) ขอบเขตเหนือชุด

(ฉ(x) ขอบเขตจากด้านล่างของชุด

ฟังก์ชันที่ถูกจำกัดในโมดูลัสหรือจำกัดเพียงอย่างเดียวก็ถูกนำมาพิจารณาด้วย

เราจะเรียกใช้ฟังก์ชัน BOUNDED บนเซต A จากโดเมนของคำจำกัดความ หากมีเลขบวก M เช่นนั้น

ในภาษาสัญลักษณ์เชิงตรรกะ

ฉ(x) มีจำนวนจำกัดบนชุด

ฟังก์ชันที่ไม่มีขอบเขตเรียกว่าไม่มีขอบเขต เรารู้ว่าคำจำกัดความที่ให้ผ่านการปฏิเสธมีเนื้อหาเพียงเล็กน้อย ในการกำหนดคำสั่งนี้เป็นคำจำกัดความ เราใช้คุณสมบัติของการดำเนินการเชิงปริมาณ (3.6) และ (3.7) จากนั้นการปฏิเสธขอบเขตของฟังก์ชันในภาษาของสัญลักษณ์เชิงตรรกะจะทำให้:

ฉ(x) มีจำนวนจำกัดบนชุด

ผลลัพธ์ที่ได้ช่วยให้เราสามารถกำหนดคำจำกัดความต่อไปนี้ได้

ฟังก์ชันเรียกว่า UNLIMITED บนเซต A ที่อยู่ในโดเมนของคำจำกัดความของฟังก์ชัน หากในชุดนี้สำหรับจำนวนบวก M ใด ๆ มีค่าของอาร์กิวเมนต์ x , ว่าค่าจะยังคงเกินค่าของ M นั่นก็คือ

เป็นตัวอย่าง ให้พิจารณาฟังก์ชัน

มันถูกกำหนดไว้บนแกนจริงทั้งหมด หากเราใช้ส่วน [–2;1] (ชุด A) จากนั้นจะมีขอบเขตทั้งด้านบนและด้านล่าง

อันที่จริง เพื่อแสดงให้เห็นว่ามีขอบเขตจากด้านบน เราต้องพิจารณาภาคแสดง

และแสดงว่ามี (อยู่) M ดังกล่าว ซึ่งสำหรับ x ทั้งหมดที่ได้รับในช่วง [–2;1] มันจะเป็นจริง

การค้นหา M ดังกล่าวไม่ใช่เรื่องยาก เราสามารถสมมติให้ M = 7 ได้ โดยปริมาณการดำรงอยู่เกี่ยวข้องกับการค้นหาค่า M อย่างน้อยหนึ่งค่า การมีอยู่ของ M ดังกล่าวยืนยันข้อเท็จจริงที่ว่าฟังก์ชันในช่วง [–2;1] มีขอบเขตจากด้านบน

เพื่อพิสูจน์ว่ามันมีขอบเขตจากด้านล่าง เราต้องพิจารณาภาคแสดง

ค่าของ M ที่รับประกันความจริงของเพรดิเคตที่กำหนดคือ เช่น M = –100



สามารถพิสูจน์ได้ว่าฟังก์ชันนี้จะถูกจำกัดอยู่ในโมดูลัสด้วย: สำหรับ x ทั้งหมดจากช่วงเวลา [–2;1] ค่าของฟังก์ชันจะตรงกับค่าของ ดังนั้นเมื่อ M เราสามารถทำได้ สำหรับ ตัวอย่าง ค่าก่อนหน้า M = 7

ให้เราแสดงว่าฟังก์ชันเดียวกันแต่ตามช่วงเวลาจะไม่จำกัดนั่นคือ

เพื่อแสดงว่า x นั้นมีอยู่จริง ให้พิจารณาคำสั่งนี้

เราได้รับการค้นหาค่าที่ต้องการของ x จากค่าบวกของอาร์กิวเมนต์

ซึ่งหมายความว่าไม่ว่าเราจะรับ M เชิงบวกใดก็ตาม ค่าของ x จะช่วยรับรองความไม่เท่าเทียมกัน

ได้จากความสัมพันธ์

เมื่อพิจารณาฟังก์ชันบนแกนจริงทั้งหมด จะแสดงได้ว่าไม่มีขอบเขตในค่าสัมบูรณ์

แท้จริงแล้วจากความไม่เท่าเทียมกัน

นั่นคือไม่ว่าค่า M เชิงบวกจะมีขนาดใหญ่เพียงใด หรือจะรับประกันการเติมเต็มของความไม่เท่าเทียมกัน .

ฟังก์ชั่นสุดขีด

ฟังก์ชั่นมีตรงจุด กับ ท้องถิ่นสูงสุด (ขั้นต่ำ) หากมีบริเวณดังกล่าวของจุดนี้ว่าสำหรับ x¹ กับ จากย่านนี้ความไม่เท่าเทียมกันก็มีอยู่


โดยเฉพาะอย่างยิ่งจุดสุดขั้วสามารถเป็นเพียงจุดภายในของช่วงเวลาและ f(x) จะต้องถูกกำหนดไว้ กรณีที่เป็นไปได้ของการไม่มีส่วนปลายจะแสดงไว้ในรูปที่ 1 8.8.

หากฟังก์ชันเพิ่มขึ้น (ลดลง) ในช่วงเวลาหนึ่งและลดลง (เพิ่มขึ้น) ในช่วงเวลาหนึ่ง ดังนั้นจุด กับ คือจุดสูงสุด (ต่ำสุด) ในพื้นที่

ไม่มีฟังก์ชันสูงสุด f(x) ณ จุดนั้น กับ สามารถกำหนดได้ดังนี้:

_______________________

f(x) มีจุดสูงสุดที่จุด c

ซึ่งหมายความว่าหากจุด c ไม่ใช่จุดสูงสุดในพื้นที่ ไม่ว่าบริเวณใกล้เคียงจะมีจุด c เป็นจุดภายในก็ตาม จะมีค่า x ที่ไม่เท่ากับ c อย่างน้อยหนึ่งค่า ดังนั้น หากไม่มีจุดสูงสุดที่จุด c เมื่อถึงจุดนี้ก็อาจไม่สุดขั้วเลย หรืออาจเป็นจุดต่ำสุด (รูปที่ 8.9)

แนวคิดเรื่องเอ็กซ์ตรีมอมให้การประเมินเชิงเปรียบเทียบของค่าของฟังก์ชัน ณ จุดใดๆ ที่เกี่ยวข้องกับค่าที่อยู่ใกล้เคียง การเปรียบเทียบค่าฟังก์ชันที่คล้ายกันสามารถดำเนินการได้สำหรับทุกจุดในช่วงเวลาหนึ่ง

ค่าสูงสุด (เล็กที่สุด) ของฟังก์ชันในชุดคือค่า ณ จุดจากชุดนี้ โดยที่ – ที่ จะได้ค่าสูงสุดของฟังก์ชันที่ จุดภายในส่วนและเล็กที่สุด ที่ปลายด้านซ้าย

ในการกำหนดค่าที่ใหญ่ที่สุด (เล็กที่สุด) ของฟังก์ชันที่ระบุในช่วงเวลา จำเป็นต้องเลือกตัวเลขที่ใหญ่ที่สุด (เล็กที่สุด) จากค่าทั้งหมดของค่าสูงสุด (ขั้นต่ำ) รวมถึงค่าที่ยอมรับ เมื่อสิ้นสุดช่วงเวลา นี่จะเป็นค่าที่ใหญ่ที่สุด (เล็กที่สุด) ของฟังก์ชัน กฎนี้จะมีการชี้แจงในภายหลัง

ปัญหาในการค้นหาค่าที่ใหญ่ที่สุดและเล็กที่สุดของฟังก์ชันในช่วงเวลาเปิดนั้นไม่ใช่เรื่องง่ายที่จะแก้ไขเสมอไป ตัวอย่างเช่นฟังก์ชัน

ในช่วงเวลา (รูปที่ 8.11) ไม่มีอยู่

ตัวอย่างเช่น ให้เราตรวจสอบให้แน่ใจว่าฟังก์ชันนี้ไม่มีความสำคัญมากที่สุด ในความเป็นจริงเมื่อคำนึงถึงความน่าเบื่อของฟังก์ชันก็สามารถโต้แย้งได้ว่าไม่ว่าเราจะตั้งค่า x ทางด้านซ้ายของความสามัคคีใกล้แค่ไหนก็จะมี x อื่น ๆ ซึ่งค่าของฟังก์ชันจะ มีค่ามากกว่าค่า ณ จุดคงที่ แต่ก็ยังน้อยกว่าหนึ่ง

แนวคิดเรื่องฟังก์ชัน คุณสมบัติที่จำกัด

คำจำกัดความของฟังก์ชัน: ถ้าแต่ละจำนวน x จากชุดตัวเลข D เชื่อมโยงกับตัวเลข y ตัวเดียว พวกเขาบอกว่าฟังก์ชัน f ถูกกำหนดให้กับเซต D และเขียน y= f(x) โดยที่ x เรียกว่า ตัวแปรอิสระหรืออาร์กิวเมนต์ของฟังก์ชันนี้ และเซต D คือโดเมนของคำจำกัดความของฟังก์ชันนี้

ฟังก์ชั่นที่จำกัดและไม่จำกัดฟังก์ชันนี้เรียกว่า ถูก จำกัดถ้ามีเลขบวกขนาดนั้น อะไร | (x) | สำหรับทุกค่า x.หากไม่มีตัวเลขดังกล่าว แสดงว่าฟังก์ชันนั้นอยู่ ไม่ จำกัด.

ตัวอย่าง.

ฟังก์ชั่นเลขคู่ คี่ โมโนโทนิค

ฟังก์ชันคู่และคี่ถ้าเพื่อ x ใดๆจากขอบเขตของคำจำกัดความของฟังก์ชันจะมีดังต่อไปนี้: (- x) = (x) จากนั้นจึงเรียกใช้ฟังก์ชัน สม่ำเสมอ; ถ้ามันเกิดขึ้น: (- x) = - (x) จากนั้นจึงเรียกใช้ฟังก์ชัน แปลก. กราฟของฟังก์ชันคู่ สมมาตรเกี่ยวกับแกน Y(รูปที่ 5) กราฟของฟังก์ชันคี่ สมมาตรเกี่ยวกับ ต้นทาง(รูปที่ 6)

ฟังก์ชันโมโนโทนิคหากมีค่าสองค่าใด ๆ ของการโต้แย้ง x 1 และ x 2 ของสภาพ x 2 >x 1 ตามมา (x 2 ) >(x 1) ตามด้วยฟังก์ชัน (x) เรียกว่า เพิ่มขึ้น; ถ้าเพื่ออะไรก็ตาม x 1 และ x 2 ของสภาพ x 2 >x 1 ตามมา (x 2 ) <(x 1 ) ตามด้วยฟังก์ชัน (x) ถูกเรียก ลดลง. ฟังก์ชันที่เพิ่มหรือลดเท่านั้นเรียกว่า ซ้ำซากจำเจ.

3. ลำดับหมายเลข ความหมายและตัวอย่าง

เราจะบอกว่าตัวแปรนั้น xมี ตัวแปรที่ได้รับคำสั่งหากทราบพื้นที่ของการเปลี่ยนแปลงและสำหรับแต่ละค่าสองค่าใด ๆ ของมันเราสามารถพูดได้ว่าค่าใดคือค่าก่อนหน้าและค่าใดคือค่าถัดไป กรณีพิเศษของปริมาณตัวแปรที่ได้รับคำสั่งคือปริมาณตัวแปรที่มีค่าต่างๆ เกิดขึ้น ลำดับตัวเลข x 1 ,x 2 ,…,xn ,…สำหรับค่าดังกล่าวได้ที่ ฉัน< j, i, j Î N , ความหมาย x ฉันถือเป็นเรื่องก่อนหน้าและ เอ็กซ์เจ– ต่อมา ไม่ว่าค่าใดจะสูงกว่าก็ตาม ดังนั้นลำดับตัวเลขจึงเป็นตัวแปรที่มีค่าต่อเนื่องสามารถกำหนดหมายเลขใหม่ได้ เราจะแสดงลำดับตัวเลขด้วย ตัวเลขแต่ละตัวในลำดับเรียกว่ามัน องค์ประกอบ.

ตัวอย่างเช่น ลำดับตัวเลขจะถูกสร้างขึ้นตามปริมาณต่อไปนี้:

3. , ที่ไหน ก, ง– ตัวเลขคงที่

ขีดจำกัดของลำดับหมายเลข

ตัวเลข เรียกว่า ขีด จำกัดลำดับ x = {เอ็กซ์เอ็น) หากจำนวนบวกจำนวนน้อยที่กำหนดไว้ล่วงหน้าโดยพลการ ε ก็เป็นเช่นนั้น จำนวนธรรมชาติ เอ็นว่าต่อหน้าทุกคน n>เอ็นอสมการ |xn - a|< ε.

ถ้าเป็นจำนวน มีการจำกัดลำดับ x = {เอ็กซ์เอ็น) จากนั้นพวกเขาก็พูดอย่างนั้น เอ็กซ์เอ็นมุ่งมั่นเพื่อ , และเขียน.

เพื่อกำหนดคำจำกัดความนี้ในแง่เรขาคณิต เราขอแนะนำแนวคิดต่อไปนี้ ย่านใกล้เคียงของจุด x 0เรียกว่าช่วงเวลาใดก็ได้ ( ก, ข) ซึ่งมีจุดนี้อยู่ในตัวมันเอง บริเวณใกล้เคียงของจุดมักถูกพิจารณา x 0, ซึ่ง x 0ก็อยู่ตรงกลางแล้ว x 0เรียกว่า ศูนย์พื้นที่ใกล้เคียง และมูลค่า ( )/2 – รัศมีละแวกบ้าน.

ดังนั้น เรามาดูกันว่าแนวคิดเรื่องขีดจำกัดของลำดับตัวเลขหมายถึงอะไรในเชิงเรขาคณิต ในการทำเช่นนี้ เราเขียนอสมการสุดท้ายจากคำจำกัดความว่า อสมการนี้หมายความว่าองค์ประกอบทั้งหมดของลำดับที่มีตัวเลข n>เอ็นต้องอยู่ในช่วงเวลา (a – ε; a + ε)

จึงเป็นจำนวนคงที่ มีการจำกัดลำดับหมายเลข ( เอ็กซ์เอ็น) หากเป็นย่านเล็กๆ ที่มีศูนย์กลางอยู่ที่จุดนั้น รัศมี ε (ε คือพื้นที่ใกล้เคียงของจุด ) มีองค์ประกอบของลำดับที่มีตัวเลขอยู่ เอ็นองค์ประกอบที่ตามมาทั้งหมดจะมีหมายเลขกำกับอยู่ n>เอ็นจะตั้งอยู่บริเวณนี้

ตัวอย่าง.

1. ปล่อยให้ตัวแปรเป็น xรับค่าตามลำดับ

ให้เราพิสูจน์ว่าขีดจำกัดของลำดับตัวเลขนี้เท่ากับ 1 รับจำนวนบวกตามใจชอบ ε เราจำเป็นต้องหาจำนวนธรรมชาติเช่นนั้น เอ็นว่าต่อหน้าทุกคน n>เอ็นความไม่เท่าเทียมกันถือ | เอ็กซ์เอ็น - 1| < ε. Действительно, т.к.

จากนั้นเพื่อตอบสนองความสัมพันธ์ |xn - a|< ε достаточно, чтобы или . Поэтому, взяв в качестве เอ็นจำนวนธรรมชาติใดๆ ที่เป็นไปตามอสมการ เราก็จะได้สิ่งที่ต้องการ ดังนั้นถ้าเราเอาตัวอย่างเช่นใส่ น= 6 สำหรับทุกคน n>6 เราจะมี

2. ใช้นิยามขีดจำกัดของลำดับจำนวน พิสูจน์ว่า

ให้เราเลือกตามใจชอบ ε > 0 แล้วพิจารณา ถ้า หรือ เช่น . ดังนั้นเราจึงเลือกจำนวนธรรมชาติใดๆ ที่ตรงกับอสมการ

ตัวอย่าง.

3. ลองพิจารณาดู. ที่ x → 1ตัวเศษของเศษส่วนมีแนวโน้มเป็น 1 และตัวส่วนมีแนวโน้มเป็น 0 แต่เนื่องจากนั่นคือ เป็นฟังก์ชันขั้นต่ำที่ x→ 1 แล้ว

ทฤษฎีบท 4ให้สามฟังก์ชันได้รับ ฉ(x) คุณ(x)และ วี(เอ็กซ์)ตอบสนองความไม่เท่าเทียมกันคุณ (x)≤f(x)≤ วี(x). ถ้าฟังก์ชั่น คุณ(x)และ วี(เอ็กซ์)มีขีดจำกัดเท่ากันที่ x→ก(หรือ x→∞) ตามด้วยฟังก์ชัน ฉ(x)มีแนวโน้มที่จะมีขีดจำกัดเท่ากัน กล่าวคือ ถ้า

ทฤษฎีบท 5ถ้า ณ x→ก(หรือ x→∞) การทำงาน y=ฉ(x)ยอมรับค่าที่ไม่เป็นลบ y≥0และในขณะเดียวกันก็มีแนวโน้มที่จะถึงขีดจำกัด ดังนั้นขีดจำกัดนี้จะต้องไม่เป็นค่าลบ: ข≥0.

การพิสูจน์. เราจะดำเนินการพิสูจน์โดยขัดแย้งกัน สมมุติว่า ข<0 , แล้ว |y – ข|≥|ข|ดังนั้นโมดูลัสส่วนต่างจึงไม่มีแนวโน้มจะเป็นศูนย์เมื่อใด x→ก. แต่แล้ว ไม่ถึงขีดจำกัด ที่ x→กซึ่งขัดแย้งกับเงื่อนไขของทฤษฎีบท

ทฤษฎีบท 6ถ้าสองฟังก์ชัน ฉ(x)และ ก.(เอ็กซ์)สำหรับค่าทั้งหมดของอาร์กิวเมนต์ xตอบสนองความไม่เท่าเทียมกัน ฉ(x)≥ ก(x)และมีขีดจำกัด ความไม่เท่าเทียมกันก็จะยังคงอยู่ ข≥c.

การพิสูจน์.ตามเงื่อนไขของทฤษฎีบท ฉ(x)-ก(x) ≥0ดังนั้นตามทฤษฎีบทที่ 5 หรือ

6. การเปิดเผยความไม่แน่นอน (0/0), ∞ -∞

ฉัน.ความไม่แน่นอน.

เมื่อแยกตัวประกอบเศษ เราใช้กฎในการหารพหุนามด้วยพหุนามด้วย "มุม" ตั้งแต่จำนวน x=1 คือรากของพหุนาม x3 – 6x2 + 11x– 6 แล้วเมื่อหารเราจะได้

7. ขีดจำกัดของลำดับ . แนวคิดของลอการิทึมธรรมชาติ

ข้อจำกัดอันน่าทึ่งประการที่สอง

ตัวอย่าง:

ลอการิทึมถึงฐาน (- เรียกจำนวนทิพย์ประมาณ 2.718281828...) ลอการิทึมธรรมชาติ. ลอการิทึมธรรมชาติของตัวเลข xแสดงว่า ln x. ลอการิทึมธรรมชาติถูกนำมาใช้กันอย่างแพร่หลายในการคำนวณทางคณิตศาสตร์ ฟิสิกส์ และทางวิศวกรรม

ลอการิทึมมีการใช้กันอย่างแพร่หลาย

ฐานที่เรียกว่าธรรมชาติ ลอการิทึมธรรมชาติจะถูกระบุด้วยสัญลักษณ์

แนวคิดเรื่องขีดจำกัดของฟังก์ชัน

แนวคิดเรื่องความต่อเนื่องของฟังก์ชันมีความสัมพันธ์โดยตรงกับแนวคิดเรื่องขีดจำกัดของฟังก์ชัน

จำนวน A เรียกว่าลิมิตของฟังก์ชัน f ที่จุด a ซึ่งเป็นลิมิตของเซต E ถ้าย่านใกล้เคียง V(A) ใดๆ ของจุด A มีย่านใกล้เคียงที่เจาะทะลุของจุด a จนเกิดภาพอยู่ใต้ การแมป f เป็นส่วนหนึ่งของย่านใกล้เคียง V(A) ที่กำหนดของจุด A

ลิมิตของฟังก์ชัน f ที่จุด a ซึ่งเป็นลิมิตของเซต E จะแสดงดังนี้: หรือหากไม่กล่าวถึงเซต E ก็ละเว้นได้

เนื่องจากแต่ละย่านสามารถเชื่อมโยงกับย่านใกล้เคียงปกติ (สมมาตร) ของตัวเองได้ คำจำกัดความของขีดจำกัดจึงสามารถกำหนดได้ในภาษา -δ ตามธรรมเนียมในการวิเคราะห์ทางคณิตศาสตร์:

ลิมิตของฟังก์ชันที่จุด f ที่จุด a ซึ่งเป็นลิมิตของเซต E มีความสัมพันธ์โดยตรงกับลิมิตของลำดับ

เราจะพิจารณาลำดับที่เป็นไปได้ทั้งหมดของจุดของเซต E ที่มีจุด a เป็นขีด จำกัด และลำดับที่สอดคล้องกันของค่าฟังก์ชันที่จุดของลำดับ หากมีลิมิตของฟังก์ชัน f ที่จุด a ลิมิตนี้จะเป็นลิมิตของทุกลำดับ

ในทางกลับกันก็เป็นจริงเช่นกัน หากลำดับทั้งหมดมาบรรจบกันเป็นค่าเดียวกัน ฟังก์ชันจะมีขีดจำกัดเท่ากับค่านั้น

ขีดจำกัดแรกที่โดดเด่น

ฟังก์ชั่นไม่ได้กำหนดไว้เมื่อใด x=0 เนื่องจากตัวเศษและส่วนของเศษส่วนกลายเป็นศูนย์ กราฟของฟังก์ชันจะแสดงในรูป

อย่างไรก็ตามสามารถหาค่าลิมิตของฟังก์ชันนี้ได้ที่ เอ็กซ์→0.

ให้เราแสดงหลักฐานของสูตรที่เป็นลายลักษณ์อักษร พิจารณาวงกลมที่มีรัศมี 1 และสมมุติว่ามุม α ซึ่งแสดงเป็นเรเดียนนั้นอยู่ภายใน 0< α < π/2. (Так как четная функция и ее значения не изменяются при изменении знака α, то достаточно рассмотреть случай, когда α >0.) จากรูปจะชัดเจนว่า

SΔOAC .

เนื่องจากพื้นที่ที่ระบุมีค่าเท่ากันตามลำดับ

SΔOAC=0,5∙โอ.ซี.โอเอ∙บาป α= 0.5ซินα, นิกาย โอเอซี = 0,5∙โอ.ซี. 2 ∙α=0.5α, SΔOBC=0,5∙โอ.ซี.พ.ศ.= 0.5tgα

เพราะฉะนั้น,

บาป α< α < tg α.

ให้เราหารเงื่อนไขทั้งหมดของอสมการด้วย sin α > 0:

แต่ . ดังนั้น ตามทฤษฎีบทที่ 4 เกี่ยวกับลิมิต เราจึงสรุปว่าสูตรที่ได้รับมาเรียกว่าลิมิตที่น่าทึ่งอันแรก

ดังนั้น ขีดจำกัดแรกที่น่าทึ่งจึงทำหน้าที่เผยให้เห็นความไม่แน่นอน โปรดทราบว่าไม่ควรสับสนสูตรผลลัพธ์กับขีดจำกัด ตัวอย่าง.

11.จำกัด และข้อจำกัดที่เกี่ยวข้อง

ข้อจำกัดอันน่าทึ่งประการที่สอง

ขีดจำกัดที่น่าทึ่งอันที่สองทำหน้าที่เปิดเผยความไม่แน่นอนของ 1 ∞ และมีลักษณะดังนี้:

ให้เราใส่ใจกับความจริงที่ว่าในสูตรสำหรับขีด จำกัด ที่น่าทึ่งที่สอง เลขชี้กำลังจะต้องมีนิพจน์ที่ผกผันกับนิพจน์ที่บวกเข้ากับหน่วยที่ฐาน (เนื่องจากในกรณีนี้ เป็นไปได้ที่จะแนะนำการเปลี่ยนแปลงของตัวแปรและ ลดขีดจำกัดที่ต้องการลงเหลือขีดจำกัดที่น่าทึ่งที่สอง)

ตัวอย่าง.

1. ฟังก์ชั่น ฉ(x)=(x-1) 2 มีค่าน้อยมากที่ x→1 เนื่องจาก (ดูรูป)

2. ฟังก์ชั่น ฉ(x)= ทีจี x– ไม่มีที่สิ้นสุดที่ x→0.

3. ฉ(x)= บันทึก (1+ x) – ไม่มีที่สิ้นสุดที่ x→0.

4. ฉ(x) = 1/x– ไม่มีที่สิ้นสุดที่ x→∞.

ให้เราสร้างความสัมพันธ์ที่สำคัญดังต่อไปนี้:

ทฤษฎีบท.ถ้าฟังก์ชั่น y=ฉ(x)เป็นตัวแทนได้ด้วย x→กเป็นผลรวมของจำนวนคงที่ และขนาดอันไม่สิ้นสุด α(x): ฉ (x)=b+ α(x)ที่ .

ในทางกลับกัน ถ้า แล้ว ฉ (x)=ข+α(x), ที่ไหน ขวาน)– ไม่มีที่สิ้นสุดที่ x→ก

การพิสูจน์.

1. ให้เราพิสูจน์ส่วนแรกของข้อความนี้ จากความเท่าเทียมกัน ฉ(x)=ข+α(x)ควร |ฉ(x) – ข|=| α|. แต่ตั้งแต่ ขวาน)มีค่าน้อยมาก ดังนั้นสำหรับ ε โดยพลการ จะมี δ – ย่านใกล้เคียงของจุด ก,ต่อหน้าทุกคน xซึ่งคุณค่าต่างๆ ขวาน)ตอบสนองความสัมพันธ์ |α(x)|< ε. แล้ว |ฉ(x) – ข|< ε. และนี่ก็หมายความว่า

2. ถ้า แล้วสำหรับ ε ใด ๆ >0 สำหรับทุกอย่าง เอ็กซ์จากบาง δ – ย่านใกล้เคียงของจุด จะ |ฉ(x) – ข|< ε. แต่ถ้าเราแสดงว่า ฉ(x) – ข= α, ที่ |α(x)|< ε ซึ่งหมายความว่า – ไม่มีที่สิ้นสุด

ลองพิจารณาคุณสมบัติพื้นฐานของฟังก์ชันเล็กๆ กัน

ทฤษฎีบท 1ผลบวกเชิงพีชคณิตของ 2, 3 และโดยทั่วไปแล้ว จำนวนอนันต์ใดๆ ที่มีขอบเขตจำกัดถือเป็นฟังก์ชันอนันต์

การพิสูจน์. ให้เราพิสูจน์สองเทอม อนุญาต ฉ(x)=α(x)+β(x), ที่ไหน และ . เราต้องพิสูจน์ว่าสำหรับ ε เล็กๆ ใดๆ ก็ตาม > พบ 0 δ> 0 เช่นนั้นสำหรับ x, สนองความเหลื่อมล้ำ |x – ก|<δ ดำเนินการ |ฉ(x)|< ε.

งั้นมาแก้ไขตัวเลขตามใจชอบกันดีกว่า ε > 0. เนื่องจากตามเงื่อนไขของทฤษฎีบท α(x)เป็นฟังก์ชันเล็กๆ น้อยๆ แล้วก็มี δ 1 แบบนั้น > 0 ซึ่งก็คือ |x – ก|< δ 1 เรามี |α(x)|< ε / 2. ในทำนองเดียวกันเนื่องจาก เบต้า(x)มีค่าน้อยมาก แล้วก็จะมี δ 2 ดังกล่าว > 0 ซึ่งก็คือ |x – ก|< δ 2 เรามี | β(x)|< ε / 2.

เอาล่ะ δ=นาที(δ 1 , δ2 } .จากนั้นในบริเวณใกล้จุด รัศมี δ ความไม่เท่าเทียมกันแต่ละอย่างก็จะเป็นที่พอใจ |α(x)|< ε / 2 และ | β(x)|< ε / 2. เพราะฉะนั้นในย่านนี้ก็จะมี

|ฉ(x)|=| α(x)+β(x)| ≤ |α(x)| + | β(x)|< ε /2 + ε /2= ε,

เหล่านั้น. |ฉ(x)|< ε ซึ่งเป็นสิ่งที่จำเป็นต้องพิสูจน์

ทฤษฎีบท 2สินค้าไม่มีที่สิ้นสุด ฟังก์ชั่นขนาดเล็ก ขวาน)สำหรับฟังก์ชันที่จำกัด ฉ(x)ที่ x→ก(หรือเมื่อ x→∞) เป็นฟังก์ชันที่เล็กที่สุด

การพิสูจน์. ตั้งแต่ฟังก์ชั่น ฉ(x)มีจำนวนจำกัดก็มีจำนวนจำกัด เช่นนั้นสำหรับทุกค่า xจากบริเวณใกล้เคียงจุดหนึ่ง ก|ฉ(x)|≤Mนอกจากนี้ตั้งแต่นั้นเป็นต้นมา ขวาน)เป็นฟังก์ชันขั้นต่ำที่ x→กจากนั้นสำหรับ ε โดยพลการ > 0 มีพื้นที่ใกล้เคียงของจุด ซึ่งความไม่เท่าเทียมกันจะคงอยู่ |α(x)|< ε /ม. จากนั้นในย่านเล็กๆ เหล่านี้ เราก็มี | อัลฟ่า|< ε /ม= ε. และนี่หมายความว่า อัฟ– ไม่มีที่สิ้นสุด สำหรับโอกาสนี้ x→∞การพิสูจน์จะดำเนินการในทำนองเดียวกัน

จากทฤษฎีบทที่พิสูจน์แล้วมีดังนี้:

ข้อพิสูจน์ 1.ถ้า และ แล้ว

ข้อพิสูจน์ 2.ถ้า ค= const แล้ว

ทฤษฎีบท 3อัตราส่วนของฟังก์ชันอนันต์ α(x)ต่อฟังก์ชัน ฉ(x)ลิมิตที่แตกต่างจากศูนย์คือฟังก์ชันที่เล็กที่สุด

การพิสูจน์. อนุญาต . จากนั้น 1 /ฉ(x)มี ฟังก์ชั่นจำกัด. ดังนั้น เศษส่วนจึงเป็นผลคูณของฟังก์ชันน้อยและฟังก์ชันจำกัด เช่น ฟังก์ชันมีน้อยมาก

ตัวอย่าง.

1.เป็นที่ชัดเจนว่าเมื่อใด x→+∞การทำงาน y=x 2 + 1 มีขนาดใหญ่เป็นอนันต์ แต่ตามทฤษฎีบทที่เขียนไว้ข้างต้น ฟังก์ชันจะมีค่าน้อยมากที่ x→+∞, เช่น. .

ทฤษฎีบทสนทนาก็สามารถพิสูจน์ได้เช่นกัน

ทฤษฎีบท 2ถ้าฟังก์ชั่น ฉ(x)- ไม่มีที่สิ้นสุดที่ x→ก(หรือ x→∞)และไม่หายไปแล้ว ย= 1/ฉ(x)เป็นฟังก์ชันที่มีขนาดใหญ่เป็นอนันต์

ดำเนินการพิสูจน์ทฤษฎีบทด้วยตัวเอง

ตัวอย่าง.

3. เนื่องจากฟังก์ชัน และ มีจำนวนไม่สิ้นสุดที่ x→+∞ดังนั้น เนื่องจากผลบวกของฟังก์ชันขั้นต่ำคือฟังก์ชันที่เล็กที่สุด ฟังก์ชันคือผลรวมของจำนวนคงที่และฟังก์ชันจำนวนไม่สิ้นสุด ด้วยเหตุนี้ ตามทฤษฎีบทที่ 1 สำหรับฟังก์ชันเล็กๆ เราจึงได้ความเท่าเทียมกันที่ต้องการ

ดังนั้น คุณสมบัติที่ง่ายที่สุดของฟังก์ชันที่เล็กและใหญ่อย่างไม่สิ้นสุดสามารถเขียนได้โดยใช้ความสัมพันธ์แบบมีเงื่อนไขดังต่อไปนี้: ≠ 0

13. ฟังก์ชันขั้นต่ำของลำดับเดียวกัน, ฟังก์ชันจิ๋วที่เทียบเท่ากัน

ฟังก์ชันที่เล็กที่สุด และเรียกว่า เล็กสุดของลำดับขนาดเล็กเดียวกัน ถ้า , แสดงว่า และสุดท้าย ถ้ามันไม่มีอยู่จริง ฟังก์ชันเล็กๆ น้อยๆ ก็หาที่เปรียบมิได้

ตัวอย่างที่ 2 การเปรียบเทียบฟังก์ชันจำนวนไม่สิ้นสุด

ฟังก์ชันอนันต์ที่เทียบเท่ากัน

ถ้า แล้วฟังก์ชันที่เล็กที่สุดจะถูกเรียก เทียบเท่า, แสดงถึง ~ .

ฟังก์ชันที่เทียบเท่าภายในเครื่อง:

เมื่อไหร่ถ้า

ความเท่าเทียมกันบางประการ(ที่ ):

ข้อจำกัดด้านเดียว

จนถึงตอนนี้เราได้พิจารณากำหนดขีดจำกัดของฟังก์ชันเมื่อใด x→กในลักษณะตามอำเภอใจ เช่น ขีดจำกัดของฟังก์ชันไม่ได้ขึ้นอยู่กับว่ามันอยู่อย่างไร xต่อ ไปทางซ้ายหรือขวาของ . อย่างไรก็ตาม เป็นเรื่องปกติที่จะค้นหาฟังก์ชันที่ไม่มีขีดจำกัดภายใต้เงื่อนไขนี้ แต่ก็มีขีดจำกัดหาก x→กเหลืออยู่อีกด้านหนึ่งของ ซ้ายหรือขวา (ดูรูป) ดังนั้นจึงมีการแนะนำแนวคิดเรื่องขีดจำกัดด้านเดียว

ถ้า ฉ(x)มีแนวโน้มที่จะถึงขีด จำกัด ที่ xพุ่งไปเป็นจำนวนหนึ่ง ดังนั้น xยอมรับเฉพาะค่าที่น้อยกว่า จากนั้นพวกเขาก็เขียนและโทร blimit ของฟังก์ชัน f(x) ที่จุด a ทางด้านซ้าย

ดังนั้นจำนวน เรียกว่าลิมิตของฟังก์ชัน y=ฉ(x)ที่ x→กทางด้านซ้าย ถ้าจำนวนบวก ε เป็นจำนวนใดก็ตาม ก็จะมีจำนวน δ (น้อยกว่า

ในทำนองเดียวกันหาก x→กและรับค่ามหาศาล จากนั้นพวกเขาก็เขียนและโทร ขีดจำกัดของฟังก์ชัน ณ จุดนั้น ด้านขวา. เหล่านั้น. ตัวเลข เรียกว่า ขีดจำกัดของฟังก์ชัน y=f(x) โดย x→a ทางด้านขวาหากจำนวนบวกใดๆ ε เป็นจำนวนใดก็ตาม δ ก็จะมีจำนวนดังกล่าว (มากกว่า ) ความไม่เท่าเทียมกันนั้นคงอยู่สำหรับทุกคน

โปรดทราบว่าหากจำกัดด้านซ้ายและขวาตรงจุด สำหรับฟังก์ชั่น ฉ(x)ไม่ตรงกัน ฟังก์ชันจึงไม่มีขีดจำกัด (สองด้าน) ณ จุดนั้น .

ตัวอย่าง.

1. พิจารณาฟังก์ชัน y=ฉ(x)กำหนดไว้ในส่วนดังต่อไปนี้

มาหาลิมิตของฟังก์ชันกัน ฉ(x)ที่ x→ 3. ชัดเจน และ

กล่าวอีกนัยหนึ่งสำหรับเอปไซลอนจำนวนเล็กน้อยโดยพลการจะมีจำนวนเดลต้าขึ้นอยู่กับเอปไซลอนเช่นนั้นจากข้อเท็จจริงที่ว่าสำหรับ x ใด ๆ ที่เป็นไปตามความไม่เท่าเทียมกันจะตามมาว่าความแตกต่างของค่าของฟังก์ชันที่จุดเหล่านี้จะเป็น เล็กโดยพลการ

เกณฑ์ความต่อเนื่องของฟังก์ชัน ณ จุดหนึ่ง:

การทำงานจะ อย่างต่อเนื่องที่จุด A ถ้าหากว่ามันต่อเนื่องกันที่จุด A ทั้งทางขวาและทางซ้าย กล่าวคือ ที่จุด A มีลิมิตด้านเดียวสองอัน พวกมันจะเท่ากันและเท่ากับค่าของ ฟังก์ชันที่จุด A

คำจำกัดความ 2: ฟังก์ชันมีความต่อเนื่องบนเซตหนึ่งถ้ามันต่อเนื่องกันทุกจุดของเซตนี้

อนุพันธ์ของฟังก์ชัน ณ จุดหนึ่ง

ให้ดาน่าถูกกำหนดในละแวกใกล้เคียง ลองพิจารณาดู

หากมีขีดจำกัดนี้อยู่ ก็จะถูกเรียก อนุพันธ์ของฟังก์ชัน f ที่จุด .

อนุพันธ์ของฟังก์ชัน– ขีดจำกัดของอัตราส่วนของการเพิ่มขึ้นของฟังก์ชันต่อการเพิ่มขึ้นของอาร์กิวเมนต์ เมื่ออาร์กิวเมนต์เพิ่มขึ้น

การดำเนินการคำนวณหรือค้นหาอนุพันธ์ ณ จุดหนึ่งเรียกว่า ความแตกต่าง .

กฎของความแตกต่าง

อนุพันธ์ฟังก์ชั่น ฉ(x)ตรงจุด x=x 0เรียกว่าอัตราส่วนของการเพิ่มขึ้นของฟังก์ชัน ณ จุดนี้ต่อการเพิ่มขึ้นของอาร์กิวเมนต์เนื่องจากค่าหลังมีแนวโน้มเป็นศูนย์ การค้นหาอนุพันธ์เรียกว่า ความแตกต่าง. อนุพันธ์ของฟังก์ชันคำนวณตามกฎทั่วไปของการสร้างความแตกต่าง: ให้เราแสดงว่า ฉ(x) = คุณ, ก.(x) = โวลต์- ฟังก์ชั่นหาอนุพันธ์ได้ ณ จุดหนึ่ง เอ็กซ์. กฎพื้นฐานของการสร้างความแตกต่าง 1) (อนุพันธ์ของผลรวมเท่ากับผลรวมของอนุพันธ์ของมัน) 2) (จากตรงนี้ เป็นไปตามที่อนุพันธ์ของผลคูณของฟังก์ชันและค่าคงที่เท่ากับผลคูณของอนุพันธ์ของค่านี้ ฟังก์ชันและค่าคงที่) 3) อนุพันธ์ของผลหาร: , ถ้า g  0 4) อนุพันธ์ของฟังก์ชันเชิงซ้อน: 5) หากมีการระบุฟังก์ชันแบบพาราเมตริก: จากนั้น

ตัวอย่าง.

1. = x a คือฟังก์ชันยกกำลังที่มีเลขชี้กำลังตามใจชอบ

ฟังก์ชันโดยนัย

ถ้าฟังก์ชันถูกกำหนดโดยสมการ y=ƒ(x) ซึ่งหาค่าด้วยความเคารพต่อ y ฟังก์ชันนั้นก็จะถูกกำหนดในรูปแบบที่ชัดเจน (ฟังก์ชันโจ่งแจ้ง)

ภายใต้ งานโดยนัยฟังก์ชันเข้าใจคำจำกัดความของฟังก์ชันในรูปแบบของสมการ F(x;y)=0 ซึ่งไม่ได้คำนวณด้วยค่า y

ฟังก์ชันใดๆ ที่กำหนดอย่างชัดเจน y=ƒ (x) สามารถเขียนเป็นนัยได้ กำหนดโดยสมการƒ(x)-y=0 แต่ไม่ใช่ในทางกลับกัน

มันไม่ง่ายเสมอไปและบางครั้งก็เป็นไปไม่ได้ที่จะแก้สมการของ y (เช่น y+2x+cozy-1=0 หรือ 2 y -x+y=0)

หากฟังก์ชันโดยนัยกำหนดไว้ตามสมการ F(x; y) = 0 ดังนั้นหากต้องการหาอนุพันธ์ของ y เทียบกับ x ก็ไม่จำเป็นต้องแก้สมการด้วยความเคารพกับ y: ก็เพียงพอที่จะแยกแยะสมการนี้ด้วยความเคารพกับ x ในขณะที่พิจารณา y เป็นฟังก์ชันของ xแล้วแก้สมการผลลัพธ์ของ y"

อนุพันธ์ของฟังก์ชันโดยนัยแสดงในรูปของอาร์กิวเมนต์ x และฟังก์ชัน y

ตัวอย่าง:

ค้นหาอนุพันธ์ของฟังก์ชัน y โดยสมการ x 3 + y 3 -3xy = 0

วิธีแก้ไข: ฟังก์ชัน y ถูกระบุโดยปริยาย เราแยกความแตกต่างด้วยความเคารพ x ความเท่าเทียมกัน x 3 + y 3 -3xy = 0 จากความสัมพันธ์ที่เกิดขึ้น

3x 2 +3y 2 y"-3(1 y+x y")=0

ตามมาด้วยว่า y 2 y"-xy"=y-x 2 เช่น y"=(y-x 2)/(y 2 -x)

อนุพันธ์ลำดับที่สูงขึ้น

เป็นที่ชัดเจนว่าอนุพันธ์

ฟังก์ชั่น y=ฉ(x)นอกจากนี้ยังมีฟังก์ชั่นจาก x:

ย" =ฉ " (x)

ถ้าฟังก์ชั่น ฉ" (x)สามารถหาอนุพันธ์ได้ จากนั้นอนุพันธ์ของมันจะเขียนแทนด้วยสัญลักษณ์ ย"" =ฉ "" (x) xสองครั้ง.
อนุพันธ์ของอนุพันธ์อันดับสองคือ ฟังก์ชั่น ย""=ฉ""(x), เรียกว่า อนุพันธ์อันดับสามของฟังก์ชัน y=f(x)หรือ อนุพันธ์ของฟังก์ชัน f(x) ของลำดับที่สามและแสดงด้วยสัญลักษณ์

เลย n-i อนุพันธ์หรืออนุพันธ์ nฟังก์ชันลำดับที่ y=ฉ(x)ระบุด้วยสัญลักษณ์

ฟิล ไลบ์นิซ:

ให้เราสมมติว่าฟังก์ชัน และ สามารถสร้างความแตกต่างได้พร้อมกับอนุพันธ์ของพวกมันจนถึงลำดับที่ n รวมอยู่ด้วย เราได้รับกฎสำหรับการแยกความแตกต่างผลคูณของสองฟังก์ชัน

ลองเปรียบเทียบนิพจน์เหล่านี้กับกำลังของทวินาม:

กฎการติดต่อมีความโดดเด่น: เพื่อให้ได้สูตรสำหรับอนุพันธ์ลำดับที่ 1, 2 หรือ 3 ของผลิตภัณฑ์ของฟังก์ชัน และ คุณต้องแทนที่กำลังและในนิพจน์สำหรับ (โดยที่ n= 1,2,3) อนุพันธ์ของคำสั่งที่เกี่ยวข้อง นอกจากนี้ กำลังของปริมาณเป็นศูนย์ และควรถูกแทนที่ด้วยอนุพันธ์ของลำดับศูนย์ ซึ่งหมายถึงฟังก์ชันและ:

การสรุปกฎนี้กับกรณีของอนุพันธ์ที่มีคำสั่งโดยพลการ n, เราได้รับ สูตรของไลบ์นิซ,

ค่าสัมประสิทธิ์ทวินามอยู่ที่ไหน:

ทฤษฎีบทของโรลล์

ทฤษฎีบทนี้ช่วยให้คุณค้นหาจุดวิกฤตแล้วนำไปใช้ได้ เงื่อนไขที่เพียงพอตรวจสอบการทำงานของ extrema

กำหนดให้ 1) f(x) ถูกกำหนดและต่อเนื่องในช่วงปิดบางช่วง 2) มีอนุพันธ์ที่มีขอบเขตจำกัด อย่างน้อยก็ในช่วงเปิด (a;b) 3) ที่ส่วนท้าย ช่วงเวลา f-iรับค่าเท่ากัน f(a) = f(b) จากนั้นระหว่างจุด a และ b จะมีจุด c โดยที่อนุพันธ์ ณ จุดนี้จะเป็น = 0

ตามทฤษฎีบทเกี่ยวกับคุณสมบัติของฟังก์ชันที่ต่อเนื่องในช่วงเวลาหนึ่ง ฟังก์ชัน f(x) จะใช้ค่าสูงสุดและต่ำสุดในช่วงเวลานี้

f(x 1) = M – สูงสุด, f(x 2) = ม. – นาที; x 1 ;x 2 โอ

1) ให้ M = ม. เช่น ม £ f(x) £ ม

Þ f(x) จะใช้ค่าคงที่ในช่วงเวลาจาก a ถึง b และ Þ อนุพันธ์ของมันจะเท่ากับศูนย์ ฉ'(x)=0

2) ให้ M>m

เพราะ ตามเงื่อนไขของทฤษฎีบท f(a) = f(b) Þ มีค่าน้อยที่สุดหรือใหญ่ที่สุด ค่า f-iจะไม่รับที่ส่วนท้ายของส่วน แต่ Þ จะนำ M หรือ m ที่จุดภายในของส่วนนี้ จากนั้นตามทฤษฎีบทของแฟร์มาต์ f’(c)=0

ทฤษฎีบทของลากรองจ์

สูตรการเพิ่มจำนวนจำกัดหรือ ทฤษฎีบทค่าเฉลี่ยของลากรองจ์ระบุว่าถ้าเป็นฟังก์ชัน มีความต่อเนื่องในช่วงเวลา [ ;] และหาอนุพันธ์ได้ในช่วงเวลา ( ;) แล้วมีประเด็นเช่นนั้น

ทฤษฎีบทของคอชี

หากฟังก์ชัน f(x) และ g(x) ต่อเนื่องกันในช่วงเวลาและสามารถหาอนุพันธ์ได้ในช่วงเวลา (a, b) และ g¢(x) ¹ 0 ในช่วงเวลา (a, b) แล้วจะมีอย่างน้อยหนึ่งฟังก์ชัน จุด e, a< e < b, такая, что

เหล่านั้น. อัตราส่วนของการเพิ่มขึ้นของฟังก์ชันในส่วนที่กำหนดจะเท่ากับอัตราส่วนของอนุพันธ์ที่จุด e ตัวอย่างรายวิชาการแก้ปัญหาการบรรยาย การคำนวณปริมาตรของร่างกายที่ใช้ สี่เหลี่ยมที่มีชื่อเสียงส่วนขนานของมัน แคลคูลัสอินทิกรัล

ตัวอย่างการดำเนินการ งานหลักสูตร วิศวกรรมไฟฟ้า

เพื่อพิสูจน์ทฤษฎีบทนี้ เมื่อมองแวบแรก การใช้ทฤษฎีบทของลากรองจ์จะสะดวกมาก เขียนสูตรผลต่างอันจำกัดสำหรับแต่ละฟังก์ชันแล้วหารด้วยฟังก์ชันอื่นๆ อย่างไรก็ตาม ความคิดนี้ผิดพลาดเพราะว่า จุด e สำหรับแต่ละฟังก์ชันโดยทั่วไปจะแตกต่างกัน แน่นอนว่า ในกรณีพิเศษ จุดช่วงเวลานี้อาจกลายเป็นจุดเดียวกันสำหรับทั้งสองฟังก์ชัน แต่นี่เป็นเรื่องบังเอิญที่หายากมาก และไม่ใช่กฎเกณฑ์ ดังนั้นจึงไม่สามารถใช้พิสูจน์ทฤษฎีบทได้

การพิสูจน์. พิจารณาฟังก์ชันตัวช่วย


เนื่องจาก x→x 0 ค่าของ c มีแนวโน้มเป็น x 0 เช่นกัน ให้เราไปถึงขีดจำกัดในความเท่าเทียมกันก่อนหน้า:

เพราะ , ที่ .

นั่นเป็นเหตุผล

(ขีดจำกัดของอัตราส่วนของค่าจิ๋วสองตัวจะเท่ากับขีดจำกัดของอัตราส่วนของอนุพันธ์ถ้ามีค่าหลัง)

กฎของโลปิตาล ที่ ∞/∞

โปรดทราบ: คำจำกัดความทั้งหมดเกี่ยวข้องกับชุดตัวเลข X ซึ่งเป็นส่วนหนึ่งของโดเมนของฟังก์ชัน: X พร้อม D(f) ในทางปฏิบัติ มักจะมีกรณีที่ X เป็นช่วงตัวเลข (เซ็กเมนต์ ช่วง รังสี ฯลฯ)

คำจำกัดความ 1.

ฟังก์ชัน y = f(x) กล่าวกันว่าเพิ่มขึ้นบนเซต X โดยมี D(f) ถ้าจุดสองจุดใดๆ x 1 และ x 2 ของเซต X โดยที่ x 1< х 2 , выполняется неравенство f(х 1 < f(х 2).

คำจำกัดความ 2

ฟังก์ชัน y = f(x) กล่าวกันว่าลดลงบนเซต X โดยมี D(f) ถ้าจุดสองจุดใดๆ x 1 และ x 2 ของเซต X โดยที่ x 1< х 2 , функции выполняется неравенство f(x 1) >ฉ(x 2)

ในทางปฏิบัติ จะสะดวกกว่าที่จะใช้สูตรต่อไปนี้: ฟังก์ชันจะเพิ่มขึ้นหากค่าที่มากขึ้นของอาร์กิวเมนต์สอดคล้องกับค่าที่มากขึ้นของฟังก์ชัน ฟังก์ชันจะลดลงหากค่าที่มากขึ้นของอาร์กิวเมนต์สอดคล้องกับค่าที่น้อยกว่าของฟังก์ชัน

ในชั้นประถมศึกษาปีที่ 7 และ 8 เราใช้การตีความทางเรขาคณิตต่อไปนี้ของแนวคิดในการเพิ่มหรือลดฟังก์ชัน: การเคลื่อนที่ไปตามกราฟของฟังก์ชันที่เพิ่มขึ้นจากซ้ายไปขวา ดูเหมือนว่าเราจะปีนขึ้นไปบนเนินเขา (รูปที่ 55) การเคลื่อนที่ไปตามกราฟของฟังก์ชันที่ลดลงจากซ้ายไปขวา เหมือนกับว่าเรากำลังลงเนิน (รูปที่ 56)
โดยปกติแล้ว คำว่า "ฟังก์ชันที่เพิ่มขึ้น" และ "ฟังก์ชันการลด" จะถูกรวมกันภายใต้ชื่อทั่วไปของฟังก์ชันโมโนโทนิก และการศึกษาฟังก์ชันเพื่อเพิ่มหรือลดเรียกว่าการศึกษาฟังก์ชันสำหรับความซ้ำซ้อน

ขอให้เราสังเกตอีกกรณีหนึ่ง: หากฟังก์ชันเพิ่มขึ้น (หรือลดลง) ในโดเมนธรรมชาติของคำจำกัดความ เราก็มักจะบอกว่าฟังก์ชันนั้นเพิ่มขึ้น (หรือลดลง) - โดยไม่ระบุชุดตัวเลข X

ตัวอย่างที่ 1

ตรวจสอบฟังก์ชันสำหรับความน่าเบื่อ:

ก) y = x 3 + 2; ข) y = 5 - 2x

สารละลาย:

ก) รับค่าที่กำหนดเองของอาร์กิวเมนต์ x 1 และ x 2 และให้ x 1<х 2 . Тогда, по свойствам числовых неравенств (мы с вами изучали их в курсе алгебры 8-го класса), будем иметь:


อสมการสุดท้ายหมายความว่า f(x 1)< f(х 2). Итак, из х 1 < х 2 следует f{х 1) < f(х 2), а это означает, что заданная функция возрастает (на всей числовой прямой).

ดังนั้นจาก x 1< х 2 следует f(х 1) >f(x 2) ซึ่งหมายความว่าฟังก์ชันที่กำหนดลดลง (บนเส้นจำนวนทั้งหมด)

คำจำกัดความ 3

ฟังก์ชัน y - f(x) ถูกจำกัดขอบเขตจากด้านล่างบนเซต X ด้วย D(f) หากค่าทั้งหมดของฟังก์ชันบนเซต X มากกว่าตัวเลขที่กำหนด (กล่าวอีกนัยหนึ่ง ถ้ามี ตัวเลข m โดยที่ค่าใดๆ x є X คืออสมการ f( x) >m)

คำจำกัดความที่ 4

ฟังก์ชัน y = f(x) กล่าวกันว่ามีขอบเขตจากด้านบนบนเซต X โดยมี D(f) หากค่าทั้งหมดของฟังก์ชันน้อยกว่าจำนวนที่กำหนด (กล่าวคือ ถ้ามีตัวเลข M ดังกล่าว ว่าสำหรับค่าใด ๆ x є X ความไม่เท่าเทียมกัน f(x) ถืออยู่< М).

หากไม่ได้ระบุเซต X แสดงว่าเรากำลังพูดถึงฟังก์ชันที่ถูกผูกจากด้านล่างหรือด้านบนในขอบเขตคำจำกัดความทั้งหมด

หากฟังก์ชันมีขอบเขตทั้งด้านล่างและด้านบน ฟังก์ชันนั้นจะถูกเรียกว่ามีขอบเขต

ขอบเขตของฟังก์ชันสามารถอ่านได้ง่ายจากกราฟ: หากฟังก์ชันถูกขอบเขตจากด้านล่าง กราฟของมันจะอยู่เหนือเส้นแนวนอนเส้นใดเส้นหนึ่ง y = m (รูปที่ 57) หากฟังก์ชันมีขอบเขตจากด้านบน กราฟของฟังก์ชันนั้นจะอยู่ใต้เส้นแนวนอนบางส่วน y = M (รูปที่ 58)


ตัวอย่างที่ 2ตรวจสอบขอบเขตของฟังก์ชัน
สารละลาย.ในด้านหนึ่ง ความไม่เท่าเทียมกันค่อนข้างชัดเจน (ตามคำจำกัดความ รากที่สองซึ่งหมายความว่าฟังก์ชันมีขอบเขตจากด้านล่าง ในทางกลับกัน เรามี และดังนั้น
ซึ่งหมายความว่าฟังก์ชันมีขอบเขตบน ตอนนี้ดูกราฟของฟังก์ชันที่กำหนด (รูปที่ 52 จากย่อหน้าก่อนหน้า) ข้อจำกัดของฟังก์ชันทั้งด้านบนและด้านล่างสามารถอ่านได้จากกราฟค่อนข้างง่าย

คำจำกัดความที่ 5

ตัวเลข m เรียกว่าค่าที่น้อยที่สุดของฟังก์ชัน y = f(x) บนเซต X C D(f) ถ้า:

1) ใน X มีจุด x 0 โดยที่ f(x 0) = m;

2) สำหรับ x ทั้งหมดจาก X จะมีอสมการ m>f(x 0) อยู่

คำนิยาม 6

ตัวเลข M เรียกว่าค่าที่ใหญ่ที่สุดของฟังก์ชัน y = f(x) บนเซต X C D(f) ถ้า:
1) ใน X มีจุด x 0 โดยที่ f(x 0) = M;
2) สำหรับ x ทั้งหมดจาก X ความไม่เท่าเทียมกัน
เราแสดงค่าที่น้อยที่สุดของฟังก์ชันทั้งในเกรด 7 และ 8 ด้วยสัญลักษณ์ y และค่าที่ใหญ่ที่สุดด้วยสัญลักษณ์ y

หากไม่ได้ระบุเซต X จะถือว่าเรากำลังพูดถึงการค้นหาค่าที่น้อยที่สุดหรือมากที่สุดของฟังก์ชันในขอบเขตคำจำกัดความทั้งหมด

ข้อความที่เป็นประโยชน์ต่อไปนี้ค่อนข้างชัดเจน:

1) หากฟังก์ชันมี Y แสดงว่าฟังก์ชันนั้นมีขอบเขตด้านล่าง
2) หากฟังก์ชันมี Y แสดงว่าฟังก์ชันนั้นมีขอบเขตด้านบน
3) ถ้าฟังก์ชันไม่มีขอบเขตด้านล่าง แสดงว่าไม่มี Y
4) ถ้าฟังก์ชันไม่ได้ถูกจำกัดไว้ด้านบน แสดงว่าไม่มี Y

ตัวอย่างที่ 3

ค้นหาที่เล็กที่สุดและ มูลค่าสูงสุดฟังก์ชั่น
สารละลาย.

ค่อนข้างชัดเจน โดยเฉพาะถ้าคุณใช้กราฟฟังก์ชัน (รูปที่ 52) นั่น = 0 (ฟังก์ชันไปถึงค่านี้ที่จุด x = -3 และ x = 3), a = 3 (ฟังก์ชันไปถึงค่านี้ที่ x = 0.
ในชั้นประถมศึกษาปีที่ 7 และชั้นประถมศึกษาปีที่ 8 เราได้กล่าวถึงคุณสมบัติของฟังก์ชันอีกสองประการ อย่างแรกเรียกว่าคุณสมบัตินูนของฟังก์ชัน ฟังก์ชันจะถือว่านูนลงในช่วงเวลา X หากโดยการเชื่อมต่อจุดสองจุดใดๆ ของกราฟ (โดยมีจุดหักล้างจาก X) กับส่วนของเส้นตรง เราพบว่าส่วนที่สอดคล้องของกราฟอยู่ใต้ส่วนที่วาด (รูปที่ .59) ความต่อเนื่อง ฟังก์ชันจะนูนขึ้นด้านบนในช่วงเวลา X หากโดยการเชื่อมต่อจุดสองจุดใดๆ ของกราฟ (โดยมีจุดหักล้างจาก X) ของฟังก์ชันด้วยส่วนของเส้นตรง เราจะพบว่าส่วนที่สอดคล้องของกราฟอยู่เหนือส่วนที่วาด ( รูปที่ 60)


คุณสมบัติที่สอง - ความต่อเนื่องของฟังก์ชันในช่วง X - หมายความว่ากราฟของฟังก์ชันในช่วง X มีความต่อเนื่องนั่นคือ ไม่มีการเจาะหรือการกระโดด

ความคิดเห็น

ในความเป็นจริงในคณิตศาสตร์ทุกอย่างเป็นไปตามที่พวกเขากล่าวว่า "ตรงกันข้าม": กราฟของฟังก์ชันจะแสดงเป็นเส้นทึบ (โดยไม่มีการเจาะหรือกระโดด) เฉพาะเมื่อมีการพิสูจน์ความต่อเนื่องของฟังก์ชันเท่านั้น แต่คำจำกัดความอย่างเป็นทางการของความต่อเนื่องของฟังก์ชันซึ่งค่อนข้างซับซ้อนและละเอียดอ่อนนั้นยังไม่อยู่ในความสามารถของเรา สิ่งเดียวกันอาจกล่าวได้เกี่ยวกับความนูนของฟังก์ชัน เมื่อพูดถึงคุณสมบัติของฟังก์ชันทั้งสองนี้ เราจะยังคงใช้แนวคิดที่เป็นภาพและสัญชาตญาณต่อไป

ตอนนี้เรามาทบทวนความรู้ของเรากัน เมื่อนึกถึงฟังก์ชันที่เราศึกษาในเกรด 7 และ 8 มาทำความเข้าใจว่ากราฟมีลักษณะอย่างไรและแสดงรายการคุณสมบัติของฟังก์ชันซึ่งเป็นไปตามลำดับที่แน่นอน เช่น: โดเมนของคำจำกัดความ; โมโนโทน; ข้อจำกัด; , ; ความต่อเนื่อง; พิสัย; นูน

จากนั้น คุณสมบัติใหม่ของฟังก์ชันจะปรากฏขึ้น และรายการคุณสมบัติจะเปลี่ยนไปตามนั้น

1. ฟังก์ชันคงที่ y = C

กราฟของฟังก์ชัน y = C แสดงในรูปที่ 1 61 - เส้นตรงขนานกับแกน x นี่เป็นคุณสมบัติที่ไม่น่าสนใจจนไม่มีประโยชน์ที่จะแสดงรายการคุณสมบัติของมัน


กราฟของฟังก์ชัน y = kx + m เป็นเส้นตรง (รูปที่ 62, 63)


คุณสมบัติของฟังก์ชัน y = kx + m:

1)
2) เพิ่มขึ้นถ้า k > 0 (รูปที่ 62) ลดลงถ้า k< 0 (рис. 63);

4) ไม่มีค่าที่ใหญ่ที่สุดหรือน้อยที่สุด
5) ฟังก์ชั่นต่อเนื่อง
6)
7) มันไม่สมเหตุสมผลเลยที่จะพูดถึงความนูน


กราฟของฟังก์ชัน y = kx 2 เป็นพาราโบลาที่มีจุดยอดอยู่ที่จุดกำเนิดและมีกิ่งก้านชี้ขึ้นหาก k > O (รูปที่ 64) และชี้ลงหาก k< 0 (рис. 65). Прямая х = 0 (ось у) является осью параболы.

คุณสมบัติของฟังก์ชัน y - kx 2:

สำหรับกรณี k> 0 (รูปที่ 64):

1) ง(ฉ) = (-oo,+oo);


4) = ไม่มีอยู่จริง;
5) ต่อเนื่อง;
6) E(f) = ฟังก์ชันลดลง และในช่วงเวลา ลดลงบนรังสี
7) นูนขึ้น

กราฟของฟังก์ชัน y = f(x) ถูกพล็อตทีละจุด ยิ่งเราใช้คะแนนในรูปแบบ (x; f(x)) มากเท่าใด เราก็จะได้แนวคิดเกี่ยวกับกราฟที่แม่นยำยิ่งขึ้นเท่านั้น หากคุณใช้จุดเหล่านี้มาก คุณจะได้ภาพกราฟที่สมบูรณ์มากขึ้น ในกรณีนี้ สัญชาตญาณบอกเราว่ากราฟควรแสดงเป็นเส้นทึบ (ในกรณีนี้ อยู่ในรูปพาราโบลา) จากนั้นเมื่ออ่านกราฟเราจะได้ข้อสรุปเกี่ยวกับความต่อเนื่องของฟังก์ชันเกี่ยวกับความนูนขึ้นหรือลงเกี่ยวกับช่วงค่าของฟังก์ชัน คุณต้องเข้าใจว่าจากคุณสมบัติทั้งเจ็ดที่ระบุไว้ มีเพียงคุณสมบัติ 1), 2), 3), 4) เท่านั้นที่ "ถูกต้องตามกฎหมาย" - "ถูกต้องตามกฎหมาย" ในแง่ที่ว่าเราสามารถให้เหตุผลโดยอ้างอิงถึงคำจำกัดความที่ชัดเจนได้ เรามีเพียงแนวคิดที่เป็นภาพและสัญชาตญาณเกี่ยวกับคุณสมบัติที่เหลือเท่านั้น โดยวิธีการนี้ไม่มีอะไรผิดปกติกับเรื่องนี้ จากประวัติความเป็นมาของการพัฒนาคณิตศาสตร์เป็นที่ทราบกันดีว่ามนุษยชาติมักใช้คุณสมบัติต่าง ๆ ของวัตถุบางอย่างบ่อยครั้งและเป็นเวลานานโดยไม่รู้ คำจำกัดความที่แม่นยำ. จากนั้นเมื่อสามารถกำหนดคำจำกัดความดังกล่าวได้ ทุกอย่างก็เข้าที่

กราฟของฟังก์ชันคือไฮเปอร์โบลา แกนพิกัดทำหน้าที่เป็นเส้นกำกับของไฮเปอร์โบลา (รูปที่ 66, 67)

1) ง(ฉ) = (-00,0)1U (0,+oo);
2) ถ้า k > 0 ฟังก์ชันจะลดลงบนรังสีเปิด (-oo, 0) และบนรังสีเปิด (0, +oo) (รูปที่ 66) ถ้าจะ< 0, то функция возрастает на (-оо, 0) и на (0, +оо) (рис. 67);
3) ไม่จำกัดจากด้านล่างหรือด้านบน;
4) ไม่มีค่าที่เล็กที่สุดหรือใหญ่ที่สุด
5) ฟังก์ชั่นต่อเนื่องบนรังสีเปิด (-oo, 0) และบนรังสีเปิด (0, +oo)
6) จ(ฉ) = (-oo,0) คุณ (0,+oo);
7) ถ้า k > 0 แล้วฟังก์ชันจะนูนขึ้นที่ x< 0, т.е. на открытом луче (-оо, 0), и выпукла вниз при х >0 เช่น บนลำแสงเปิด (0, +oo) (รูปที่ 66) ถ้าจะ< 0, то функция выпукла вверх при х >O และนูนลงมาที่ x< О (рис. 67).
กราฟของฟังก์ชันเป็นสาขาหนึ่งของพาราโบลา (รูปที่ 68) คุณสมบัติฟังก์ชั่น:
1) D(f) = , เพิ่มขึ้นบนรังสี )

เข้าร่วมการสนทนา
อ่านด้วย
ชุดเครื่องมือ
วิเคราะห์ผลงาน “ช้าง” (อ
Nikolai Nekrasovบทกวี Twilight of Nekrasov