สมัครสมาชิกและอ่าน
สิ่งที่น่าสนใจที่สุด
บทความก่อน!

อัตราส่วนโคไซน์ ไซน์ (sin x) และโคไซน์ (cos x) – คุณสมบัติ กราฟ สูตร

บรรยาย: ไซน์ โคไซน์ แทนเจนต์ โคแทนเจนต์ของมุมใดๆ

ไซน์ โคไซน์ของมุมใดๆ


เพื่อให้เข้าใจว่าฟังก์ชันตรีโกณมิติคืออะไร มาดูวงกลมที่มีรัศมีหน่วยกัน วงกลมนี้มีจุดศูนย์กลางอยู่ที่จุดกำเนิด ประสานงานเครื่องบิน. เพื่อกำหนดฟังก์ชันที่กำหนด เราจะใช้เวกเตอร์รัศมี หรือซึ่งเริ่มต้นที่จุดศูนย์กลางของวงกลมและจุด เป็นจุดบนวงกลม เวกเตอร์รัศมีนี้สร้างอัลฟามุมกับแกน โอ้. เนื่องจากวงกลมมีรัศมีเท่ากับหนึ่งแล้ว หรือ = ร = 1.

หากจากจุดนั้น ลดตั้งฉากกับแกนลง โอ้แล้วเราจะได้สามเหลี่ยมมุมฉากที่มีด้านตรงข้ามมุมฉากเท่ากับหนึ่ง


ถ้าเวกเตอร์รัศมีเคลื่อนที่ตามเข็มนาฬิกา ทิศทางนี้จะถูกเรียก เชิงลบถ้ามันเคลื่อนที่ทวนเข็มนาฬิกา - เชิงบวก.


ไซน์ของมุม หรือ, เป็นจุดกำหนดของจุด เวกเตอร์บนวงกลม

นั่นคือเพื่อให้ได้ค่าไซน์ของมุมอัลฟาที่กำหนด จำเป็นต้องกำหนดพิกัด ยูบนพื้นผิว

ยังไง มูลค่าที่กำหนดได้รับแล้ว? เนื่องจากเรารู้ว่าไซน์ของมุมใดๆ ก็ตามในสามเหลี่ยมมุมฉากคืออัตราส่วนของขาตรงข้ามต่อด้านตรงข้ามมุมฉาก เราจึงได้สิ่งนั้น

และตั้งแต่นั้นเป็นต้นมา ร=1, ที่ บาป(α) = y 0 .


ในวงกลมหน่วย ค่าเลขลำดับต้องไม่ต่ำกว่า -1 และมากกว่า 1 ซึ่งหมายความว่า

ไซน์จะได้ค่าบวกในไตรมาสที่หนึ่งและสองของวงกลมหน่วยและเป็นค่าลบในไตรมาสที่สามและสี่

โคไซน์ของมุมวงกลมที่กำหนดโดยเวกเตอร์รัศมี หรือ, คือจุดขาดของจุด เวกเตอร์บนวงกลม

นั่นคือเพื่อให้ได้ค่าโคไซน์ของมุมอัลฟาที่กำหนด จำเป็นต้องกำหนดพิกัด เอ็กซ์บนพื้นผิว


โคไซน์ของมุมใดก็ได้ในสามเหลี่ยมมุมฉากคืออัตราส่วนของขาที่อยู่ติดกันต่อด้านตรงข้ามมุมฉาก เราได้สิ่งนั้น


และตั้งแต่นั้นเป็นต้นมา ร=1, ที่ คอส(α) = x 0 .

ในวงกลมหน่วย ค่า Abscissa ต้องไม่น้อยกว่า -1 และมากกว่า 1 ซึ่งหมายถึง

โคไซน์รับค่าบวกในไตรมาสที่หนึ่งและสี่ของวงกลมหน่วย และเป็นค่าลบในไตรมาสที่สองและสาม

แทนเจนต์มุมใดก็ได้คำนวณอัตราส่วนของไซน์ต่อโคไซน์

หากเราพิจารณาสามเหลี่ยมมุมฉาก นี่คืออัตราส่วนของด้านตรงข้ามกับด้านประชิด หากเรากำลังพูดถึงวงกลมหน่วย นี่คืออัตราส่วนของพิกัดต่อค่าแอบซิสซา

เมื่อพิจารณาจากความสัมพันธ์เหล่านี้ ก็สามารถเข้าใจได้ว่าแทนเจนต์ไม่สามารถดำรงอยู่ได้หากค่า Abscissa เป็นศูนย์ นั่นคือที่มุม 90 องศา แทนเจนต์สามารถรับค่าอื่นๆ ทั้งหมดได้

แทนเจนต์เป็นบวกในไตรมาสที่หนึ่งและสามของวงกลมหน่วย และเป็นลบในไตรมาสที่สองและสี่


ในบทความนี้ เราจะแสดงวิธีให้ คำจำกัดความของไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ของมุมและจำนวนในวิชาตรีโกณมิติ. ที่นี่เราจะพูดถึงสัญลักษณ์ ยกตัวอย่างรายการ และให้ภาพประกอบแบบกราฟิก โดยสรุป ให้เราวาดเส้นขนานระหว่างคำจำกัดความของไซน์ โคไซน์ แทนเจนต์และโคแทนเจนต์ในตรีโกณมิติและเรขาคณิต

การนำทางหน้า

คำจำกัดความของไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์

เรามาดูกันว่าแนวคิดของไซน์, โคไซน์, แทนเจนต์และโคแทนเจนต์เกิดขึ้นในหลักสูตรคณิตศาสตร์ของโรงเรียนอย่างไร ในบทเรียนเรขาคณิต จะให้คำจำกัดความของไซน์ โคไซน์ แทนเจนต์และโคแทนเจนต์ของมุมแหลมในรูปสามเหลี่ยมมุมฉาก และต่อมามีการศึกษาตรีโกณมิติซึ่งพูดถึงไซน์, โคไซน์, แทนเจนต์และโคแทนเจนต์ของมุมการหมุนและจำนวน ให้เรานำเสนอคำจำกัดความทั้งหมดนี้ ยกตัวอย่าง และแสดงความคิดเห็นที่จำเป็น

มุมแหลมในรูปสามเหลี่ยมมุมฉาก

จากหลักสูตรเรขาคณิต เรารู้คำจำกัดความของไซน์ โคไซน์ แทนเจนต์และโคแทนเจนต์ของมุมแหลมในรูปสามเหลี่ยมมุมฉาก พวกมันถูกกำหนดให้เป็นอัตราส่วนของด้านของสามเหลี่ยมมุมฉาก ให้เราให้สูตรของพวกเขา

คำนิยาม.

ไซน์ของมุมแหลมในรูปสามเหลี่ยมมุมฉากคืออัตราส่วนของด้านตรงข้ามกับด้านตรงข้ามมุมฉาก

คำนิยาม.

โคไซน์ของมุมแหลมในรูปสามเหลี่ยมมุมฉากคืออัตราส่วนของขาที่อยู่ติดกันต่อด้านตรงข้ามมุมฉาก

คำนิยาม.

แทนเจนต์ของมุมแหลมในรูปสามเหลี่ยมมุมฉาก– นี่คืออัตราส่วนของด้านตรงข้ามกับด้านประชิด

คำนิยาม.

โคแทนเจนต์ของมุมแหลมในรูปสามเหลี่ยมมุมฉาก- นี่คืออัตราส่วนของด้านประชิดต่อด้านตรงข้าม

นอกจากนี้ยังมีการแนะนำการกำหนดไซน์, โคไซน์, แทนเจนต์และโคแทนเจนต์ด้วย - sin, cos, tg และ ctg ตามลำดับ

ตัวอย่างเช่น หาก ABC เป็นรูปสามเหลี่ยมมุมฉากที่มีมุมฉาก C ดังนั้นไซน์ของมุมแหลม A จะเท่ากับอัตราส่วนของด้านตรงข้าม BC ต่อด้านตรงข้ามมุมฉาก AB นั่นคือ sin∠A=BC/AB

คำจำกัดความเหล่านี้ช่วยให้คุณสามารถคำนวณค่าของไซน์, โคไซน์, แทนเจนต์และโคแทนเจนต์ของมุมแหลมจากความยาวที่ทราบของด้านข้างของสามเหลี่ยมมุมฉากรวมถึงจากค่าที่ทราบของไซน์, โคไซน์, แทนเจนต์ โคแทนเจนต์และความยาวของด้านใดด้านหนึ่งเพื่อหาความยาวของด้านอื่นๆ ตัวอย่างเช่น หากเรารู้ว่าในสามเหลี่ยมมุมฉาก AC ขาเท่ากับ 3 และด้านตรงข้ามมุมฉาก AB เท่ากับ 7 เราก็สามารถคำนวณค่าโคไซน์ของมุมแหลม A ตามคำจำกัดความ: cos∠A=AC/ เอบี=3/7.

มุมการหมุน

ในวิชาตรีโกณมิติ พวกเขาเริ่มมองมุมให้กว้างขึ้น - พวกเขาแนะนำแนวคิดเรื่องมุมการหมุน ขนาดของมุมการหมุนซึ่งต่างจากมุมเฉียบพลันนั้นไม่จำกัดอยู่ที่ 0 ถึง 90 องศา มุมการหมุนในหน่วยองศา (และในหน่วยเรเดียน) สามารถแสดงด้วยจำนวนจริงใดๆ ตั้งแต่ −∞ ถึง +∞

ในแง่นี้ คำจำกัดความของไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ไม่ได้กำหนดเป็นมุมแหลม แต่เป็นมุมที่มีขนาดตามอำเภอใจ - มุมการหมุน พวกมันจะได้รับผ่านพิกัด x และ y ของจุด A 1 ซึ่งจุดเริ่มต้นที่เรียกว่า A(1, 0) ไปตามการหมุนของมันด้วยมุม α รอบจุด O - จุดเริ่มต้นของระบบพิกัดคาร์ทีเซียนสี่เหลี่ยม และศูนย์กลางของวงกลมหน่วย

คำนิยาม.

ไซน์ของมุมการหมุนα คือลำดับของจุด A 1 นั่นคือ sinα=y

คำนิยาม.

โคไซน์ของมุมการหมุนα เรียกว่า abscissa ของจุด A 1 นั่นคือ cosα=x

คำนิยาม.

แทนเจนต์ของมุมการหมุนα คืออัตราส่วนของพิกัดของจุด A 1 ต่อจุดหักล้างของมัน นั่นคือ tanα=y/x

คำนิยาม.

โคแทนเจนต์ของมุมการหมุนα คืออัตราส่วนของ abscissa ของจุด A 1 ต่อพิกัด ซึ่งก็คือ ctgα=x/y

ไซน์และโคไซน์ถูกกำหนดไว้สำหรับมุม α ใดๆ เนื่องจากเราสามารถหาค่าแอบซิสซาและพิกัดของจุดได้เสมอ ซึ่งได้มาจากการหมุนจุดเริ่มต้นด้วยมุม α แต่แทนเจนต์และโคแทนเจนต์ไม่ได้ถูกกำหนดไว้สำหรับมุมใดๆ แทนเจนต์ไม่ได้ถูกกำหนดไว้สำหรับมุม α ซึ่งจุดเริ่มต้นไปยังจุดที่มีจุดหักมุมเป็นศูนย์ (0, 1) หรือ (0, −1) และสิ่งนี้เกิดขึ้นที่มุม 90°+180° k, k∈Z (π /2+π·k ราด) อันที่จริง ที่มุมการหมุนเช่นนั้น นิพจน์ tgα=y/x ไม่สมเหตุสมผล เนื่องจากนิพจน์มีการหารด้วยศูนย์ สำหรับโคแทนเจนต์นั้น ไม่ได้ถูกกำหนดไว้สำหรับมุม α ซึ่งจุดเริ่มต้นไปยังจุดที่มีพิกัดเป็นศูนย์ (1, 0) หรือ (−1, 0) และสิ่งนี้เกิดขึ้นสำหรับมุม 180° k, k ∈Z (π·เค ราด).

ดังนั้น ไซน์และโคไซน์ถูกกำหนดไว้สำหรับมุมการหมุนใดๆ แทนเจนต์ถูกกำหนดสำหรับทุกมุมยกเว้น 90°+180°k, k∈Z (π/2+πk rad) และโคแทนเจนต์ถูกกำหนดสำหรับทุกมุมยกเว้น 180° ·k , k∈Z (π·k ราด)

คำจำกัดความรวมถึงการกำหนดที่เราทราบอยู่แล้วว่า sin, cos, tg และ ctg และยังใช้เพื่อกำหนดไซน์, โคไซน์, แทนเจนต์และโคแทนเจนต์ของมุมการหมุน (บางครั้งคุณสามารถค้นหาการกำหนด tan และ cotที่สอดคล้องกับแทนเจนต์และโคแทนเจนต์) . ดังนั้นไซน์ของมุมการหมุน 30 องศาสามารถเขียนได้เป็น sin30° รายการ tg(−24°17′) และ ctgα สอดคล้องกับแทนเจนต์ของมุมการหมุน −24 องศา 17 นาที และโคแทนเจนต์ของมุมการหมุน α . โปรดจำไว้ว่าเมื่อเขียนหน่วยวัดเรเดียนของมุม มักจะละเว้นการกำหนด "rad" ตัวอย่างเช่น โคไซน์ของมุมการหมุนของสามไพราด มักจะเขียนแทน cos3·π

โดยสรุปประเด็นนี้ เป็นที่น่าสังเกตว่าเมื่อพูดถึงไซน์ โคไซน์ แทนเจนต์และโคแทนเจนต์ของมุมการหมุน วลี "มุมการหมุน" หรือคำว่า "การหมุน" มักถูกมองข้ามไป นั่นคือ แทนที่จะใช้วลี “ไซน์ของมุมการหมุนอัลฟา” มักใช้วลี “ไซน์ของมุมอัลฟา” หรือที่สั้นกว่านั้นคือ “ไซน์อัลฟา” เช่นเดียวกับโคไซน์ แทนเจนต์ และโคแทนเจนต์

นอกจากนี้เรายังจะกล่าวอีกว่าคำจำกัดความของไซน์ โคไซน์ แทนเจนต์และโคแทนเจนต์ของมุมแหลมในรูปสามเหลี่ยมมุมฉากนั้นสอดคล้องกับคำจำกัดความที่ให้ไว้สำหรับไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ของมุมการหมุนตั้งแต่ 0 ถึง 90 องศา เราจะพิสูจน์เรื่องนี้

ตัวเลข

คำนิยาม.

ไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ของจำนวน t คือตัวเลขที่เท่ากับไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ของมุมการหมุนในหน่วย t เรเดียน ตามลำดับ

ตัวอย่างเช่น โคไซน์ของตัวเลข 8·π ตามคำจำกัดความคือตัวเลขที่เท่ากับโคไซน์ของมุม 8·π rad และโคไซน์ของมุม 8·π rad เท่ากับ 1 ดังนั้น โคไซน์ของตัวเลข 8·π เท่ากับ 1

มีอีกวิธีหนึ่งในการกำหนดไซน์ โคไซน์ แทนเจนต์และโคแทนเจนต์ของตัวเลข ประกอบด้วยข้อเท็จจริงที่ว่าจำนวนจริง t แต่ละตัวสัมพันธ์กับจุดบนวงกลมหน่วยโดยมีจุดศูนย์กลางที่จุดกำเนิดของระบบพิกัดสี่เหลี่ยม และไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ถูกกำหนดผ่านพิกัดของจุดนี้ ลองดูรายละเอียดเพิ่มเติมนี้

ให้เราแสดงวิธีการโต้ตอบระหว่างจำนวนจริงและจุดบนวงกลม:

  • หมายเลข 0 ถูกกำหนดให้เป็นจุดเริ่มต้น A(1, 0);
  • จำนวนบวก t สัมพันธ์กับจุดบนวงกลมหน่วยซึ่งเราจะไปถึงถ้าเราเคลื่อนที่ไปตามวงกลมจากจุดเริ่มต้นในทิศทางทวนเข็มนาฬิกาแล้วเดินไปตามเส้นทางที่มีความยาว t
  • จำนวนลบ t สัมพันธ์กับจุดของวงกลมหนึ่งหน่วย ซึ่งเราจะไปถึงได้หากเราเคลื่อนไปตามวงกลมจากจุดเริ่มต้นในทิศทางตามเข็มนาฬิกาแล้วเดินไปในเส้นทางที่มีความยาว |t| .

ตอนนี้เรามาดูคำจำกัดความของไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ของจำนวน t สมมติว่าตัวเลข t ตรงกับจุดบนวงกลม A 1 (x, y) (เช่น ตัวเลข &pi/2; ตรงกับจุด A 1 (0, 1) )

คำนิยาม.

ไซน์ของจำนวน t คือลำดับของจุดบนวงกลมหนึ่งหน่วยที่ตรงกับเลข t นั่นคือ sint=y

คำนิยาม.

โคไซน์ของจำนวน t เรียกว่า abscissa ของจุดในวงกลมหน่วยซึ่งตรงกับเลข t นั่นคือ cost=x

คำนิยาม.

แทนเจนต์ของจำนวน t คืออัตราส่วนของพิกัดต่อจุดหักล้างของจุดบนวงกลมหนึ่งหน่วยซึ่งสอดคล้องกับตัวเลข t นั่นคือ tgt=y/x ในอีกสูตรหนึ่งที่เทียบเท่ากัน ค่าแทนเจนต์ของตัวเลข t คืออัตราส่วนของไซน์ของจำนวนนี้ต่อโคไซน์ ซึ่งก็คือ tgt=sint/cost

คำนิยาม.

โคแทนเจนต์ของจำนวน t คืออัตราส่วนของ abscissa ต่อพิกัดของจุดบนวงกลมหนึ่งหน่วยที่สอดคล้องกับตัวเลข t นั่นคือ ctgt=x/y อีกสูตรหนึ่งคือ ค่าแทนเจนต์ของจำนวน t คืออัตราส่วนของโคไซน์ของจำนวน t ต่อไซน์ของจำนวน t: ctgt=cost/sint

ที่นี่เราทราบว่าคำจำกัดความที่เพิ่งให้นั้นสอดคล้องกับคำจำกัดความที่ให้ไว้ตอนต้นของย่อหน้านี้ อันที่จริงจุดบนวงกลมหน่วยที่ตรงกับตัวเลข t เกิดขึ้นพร้อมกับจุดที่ได้จากการหมุนจุดเริ่มต้นเป็นมุม t เรเดียน

ยังคงคุ้มค่าที่จะชี้แจงประเด็นนี้ สมมุติว่าเรามีค่า sin3 เราจะเข้าใจได้อย่างไรว่าเรากำลังพูดถึงไซน์ของเลข 3 หรือไซน์ของมุมการหมุนของ 3 เรเดียน? ซึ่งมักจะชัดเจนจากบริบท ไม่เช่นนั้นอาจไม่มีความสำคัญพื้นฐาน

ฟังก์ชันตรีโกณมิติของอาร์กิวเมนต์เชิงมุมและตัวเลข

ตามคำจำกัดความที่ให้ไว้ในย่อหน้าก่อนหน้า แต่ละมุมของการหมุน α สอดคล้องกับค่าsinαที่เฉพาะเจาะจงมาก เช่นเดียวกับค่าcosα นอกจากนี้ มุมการหมุนทั้งหมดที่ไม่ใช่ 90°+180°k, k∈Z (π/2+πk rad) จะสอดคล้องกับค่า tgα และค่าอื่นที่ไม่ใช่ 180°k, k∈Z (πk rad ) – ค่า ของctgα ดังนั้น sinα, cosα, tanα และ ctgα จึงเป็นฟังก์ชันของมุม α กล่าวอีกนัยหนึ่ง สิ่งเหล่านี้คือฟังก์ชันของอาร์กิวเมนต์เชิงมุม

เราสามารถพูดในทำนองเดียวกันเกี่ยวกับฟังก์ชันไซน์ โคไซน์ แทนเจนต์และโคแทนเจนต์ของอาร์กิวเมนต์เชิงตัวเลข แท้จริงแล้ว จำนวนจริง t แต่ละตัวสอดคล้องกับค่า Sin และราคาต้นทุนที่เฉพาะเจาะจงมาก นอกจากนี้ ตัวเลขทั้งหมดที่ไม่ใช่ π/2+π·k, k∈Z จะสอดคล้องกับค่า tgt และตัวเลข π·k, k∈Z - ค่า ctgt

เรียกว่าฟังก์ชันไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ ฟังก์ชันตรีโกณมิติพื้นฐาน.

มักจะชัดเจนจากบริบทว่าเรากำลังเผชิญกับฟังก์ชันตรีโกณมิติของอาร์กิวเมนต์เชิงมุมหรืออาร์กิวเมนต์เชิงตัวเลข มิฉะนั้น เราสามารถมองตัวแปรอิสระว่าเป็นทั้งการวัดมุม (อาร์กิวเมนต์เชิงมุม) และอาร์กิวเมนต์เชิงตัวเลข

อย่างไรก็ตาม ที่โรงเรียนเราศึกษาฟังก์ชันตัวเลขเป็นหลัก นั่นคือ ฟังก์ชันที่มีการโต้แย้งตลอดจนค่าฟังก์ชันที่เกี่ยวข้องเป็นตัวเลข ดังนั้นหากเรากำลังพูดถึงฟังก์ชันโดยเฉพาะ ขอแนะนำให้พิจารณาฟังก์ชันตรีโกณมิติเป็นฟังก์ชันของอาร์กิวเมนต์ตัวเลข

ความสัมพันธ์ระหว่างคำจำกัดความจากเรขาคณิตและตรีโกณมิติ

หากเราพิจารณามุมการหมุน α อยู่ในช่วงตั้งแต่ 0 ถึง 90 องศา ดังนั้น คำจำกัดความของไซน์ โคไซน์ แทนเจนต์และโคแทนเจนต์ของมุมการหมุนในบริบทของตรีโกณมิติจะสอดคล้องกับคำจำกัดความของไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ของ มุมแหลมในรูปสามเหลี่ยมมุมฉาก ซึ่งกำหนดไว้ในหลักสูตรเรขาคณิต ลองพิสูจน์เรื่องนี้ดู

ให้เราพรรณนาวงกลมหน่วยในระบบพิกัดคาร์ทีเซียนสี่เหลี่ยม Oxy ลองทำเครื่องหมายจุดเริ่มต้น A(1, 0) . ลองหมุนเป็นมุม α ตั้งแต่ 0 ถึง 90 องศา เราจะได้จุด A 1 (x, y) ให้เราปล่อยเส้นตั้งฉาก A 1 H จากจุด A 1 ไปยังแกน Ox

เห็นได้ง่ายว่าในรูปสามเหลี่ยมมุมฉาก มุม A 1 OH เท่ากับมุมการหมุน α ความยาวของขา OH ที่อยู่ติดกับมุมนี้จะเท่ากับจุดหักมุมของจุด A 1 นั่นคือ |OH |=x ความยาวของขา A 1 H ตรงข้ามกับมุมเท่ากับพิกัดของจุด A 1 นั่นคือ |A 1 H|=y และความยาวของด้านตรงข้ามมุมฉาก OA 1 เท่ากับ 1 เนื่องจากเป็นรัศมีของวงกลมหนึ่งหน่วย จากนั้น ตามคำนิยามจากเรขาคณิต ไซน์ของมุมแหลม α ในรูปสามเหลี่ยมมุมฉาก A 1 OH เท่ากับอัตราส่วนของขาตรงข้ามต่อด้านตรงข้ามมุมฉาก นั่นคือ sinα=|A 1 H|/|OA 1 |= ปี/1=ปี และตามคำจำกัดความจากตรีโกณมิติ ไซน์ของมุมการหมุน α เท่ากับพิกัดของจุด A 1 นั่นคือ sinα=y นี่แสดงให้เห็นว่าการหาไซน์ของมุมแหลมในรูปสามเหลี่ยมมุมฉากนั้นเทียบเท่ากับการหาไซน์ของมุมการหมุน α เมื่อ α อยู่ระหว่าง 0 ถึง 90 องศา

ในทำนองเดียวกัน แสดงให้เห็นว่าคำจำกัดความของโคไซน์ แทนเจนต์ และโคแทนเจนต์ของมุมเฉียบพลัน α นั้นสอดคล้องกับคำจำกัดความของโคไซน์ แทนเจนต์ และโคแทนเจนต์ของมุมการหมุน α

บรรณานุกรม.

  1. เรขาคณิต. เกรด 7-9: หนังสือเรียน เพื่อการศึกษาทั่วไป สถาบัน / [ล. S. Atanasyan, V. F. Butuzov, S. B. Kadomtsev ฯลฯ] - ฉบับที่ 20 อ.: การศึกษา 2553 - 384 หน้า: ป่วย - ไอ 978-5-09-023915-8.
  2. โปโกเรลอฟ เอ.วี.เรขาคณิต: หนังสือเรียน. สำหรับเกรด 7-9 การศึกษาทั่วไป สถาบัน / A.V. Pogorelov - ฉบับที่ 2 - อ.: การศึกษา, 2544. - 224 หน้า: ป่วย. - ISBN 5-09-010803-X.
  3. พีชคณิตและ ฟังก์ชันเบื้องต้น : บทช่วยสอนสำหรับนักเรียนชั้นประถมศึกษาปีที่ 9 มัธยม/ E. S. Kochetkov, E. S. Kochetkova; เรียบเรียงโดย Doctor of Physical and Mathematical Sciences O. N. Golovin. - 4th ed. อ.: การศึกษา, 2512.
  4. พีชคณิต:หนังสือเรียน สำหรับเกรด 9 เฉลี่ย โรงเรียน/ยู N. Makarychev, N. G. Mindyuk, K. I. Neshkov, S. B. Suvorova; เอ็ด S. A. Telyakovsky - M.: การศึกษา, 1990. - 272 หน้า: ป่วย - ISBN 5-09-002727-7
  5. พีชคณิตและจุดเริ่มต้นของการวิเคราะห์: Proc. สำหรับเกรด 10-11 การศึกษาทั่วไป สถาบัน / A. N. Kolmogorov, A. M. Abramov, Yu. P. Dudnitsyn และคนอื่น ๆ ; เอ็ด A. N. Kolmogorov - ฉบับที่ 14 - ม.: การศึกษา, 2547 - 384 หน้า: ป่วย - ISBN 5-09-013651-3
  6. มอร์ดโควิช เอ.จี.พีชคณิตและจุดเริ่มต้นของการวิเคราะห์ ชั้นประถมศึกษาปีที่ 10 ใน 2 ส่วน ส่วนที่ 1: หนังสือเรียนสำหรับสถาบันการศึกษาทั่วไป (ระดับโปรไฟล์) / A. G. Mordkovich, P. V. Semenov - ฉบับที่ 4, เสริม. - อ.: Mnemosyne, 2550. - 424 หน้า: ป่วย. ไอ 978-5-346-00792-0.
  7. พีชคณิตและจุดเริ่มต้นของการวิเคราะห์ทางคณิตศาสตร์ เกรด 10: หนังสือเรียน เพื่อการศึกษาทั่วไป สถาบัน: พื้นฐานและโปรไฟล์ ระดับ /[Yu. M. Kolyagin, M. V. Tkacheva, N. E. Fedorova, M. I. Shabunin]; แก้ไขโดย เอ.บี. ซิจเชนโก้. - ฉบับที่ 3 - I.: การศึกษา, 2010.- 368 หน้า: ill.- ISBN 978-5-09-022771-1.
  8. บาชมาคอฟ เอ็ม.ไอ.พีชคณิตและจุดเริ่มต้นของการวิเคราะห์: หนังสือเรียน สำหรับเกรด 10-11 เฉลี่ย โรงเรียน - ฉบับที่ 3 - อ.: การศึกษา พ.ศ. 2536 - 351 หน้า: ป่วย - ไอ 5-09-004617-4.
  9. Gusev V.A., Mordkovich A.G.คณิตศาสตร์ (คู่มือสำหรับผู้เข้าโรงเรียนเทคนิค) พรบ. เบี้ยเลี้ยง.- ม.; สูงกว่า โรงเรียน พ.ศ. 2527-351 น. ป่วย

เรียกว่าอัตราส่วนของด้านตรงข้ามกับด้านตรงข้ามมุมฉาก ไซนัสของมุมเฉียบพลันสามเหลี่ยมมุมฉาก.

\sin \alpha = \frac(a)(c)

โคไซน์ของมุมแหลมของสามเหลี่ยมมุมฉาก

เรียกว่าอัตราส่วนของขาที่อยู่ติดกันต่อด้านตรงข้ามมุมฉาก โคไซน์ของมุมแหลมสามเหลี่ยมมุมฉาก.

\cos \alpha = \frac(b)(c)

แทนเจนต์ของมุมแหลมของสามเหลี่ยมมุมฉาก

อัตราส่วนของด้านตรงข้ามกับด้านประชิดเรียกว่า แทนเจนต์ของมุมแหลมสามเหลี่ยมมุมฉาก.

tg \alpha = \frac(a)(b)

โคแทนเจนต์ของมุมแหลมของสามเหลี่ยมมุมฉาก

อัตราส่วนของด้านประชิดต่อด้านตรงข้ามเรียกว่า โคแทนเจนต์ของมุมแหลมสามเหลี่ยมมุมฉาก.

ctg \alpha = \frac(b)(a)

ไซน์ของมุมใดก็ได้

พิกัดของจุดบนวงกลมหนึ่งหน่วยซึ่งมุม \alpha สอดคล้องกันเรียกว่า ไซน์ของมุมใดก็ได้การหมุน \alpha

\บาป \อัลฟา=y

โคไซน์ของมุมใดก็ได้

คำว่า abscissa ของจุดบนวงกลมหนึ่งหน่วยซึ่งมุม \alpha สอดคล้องกันเรียกว่า โคไซน์ของมุมใดก็ได้การหมุน \alpha

\cos \อัลฟา=x

แทนเจนต์ของมุมใดก็ได้

อัตราส่วนของไซน์ของมุมการหมุนตามอำเภอใจ \อัลฟา ต่อโคไซน์เรียกว่า แทนเจนต์ของมุมใดก็ได้การหมุน \alpha

ตาล \อัลฟา = y_(A)

tg \alpha = \frac(\sin \alpha)(\cos \alpha)

โคแทนเจนต์ของมุมใดก็ได้

อัตราส่วนของโคไซน์ของมุมการหมุนตามอำเภอใจ \อัลฟา ต่อไซน์ของมันเรียกว่า โคแทนเจนต์ของมุมใดก็ได้การหมุน \alpha

CTG\อัลฟา =x_(A)

ctg \alpha = \frac(\cos \alpha)(\sin \alpha)

ตัวอย่างการหามุมตามอำเภอใจ

ถ้า \alpha คือมุม AOM โดยที่ M คือจุดของวงกลมหน่วย ดังนั้น

\sin \alpha=y_(M) , \cos \alpha=x_(M) , tg \alpha=\frac(y_(M))(x_(M)), ctg \alpha=\frac(x_(M))(y_(M)).

ตัวอย่างเช่น ถ้า \มุม AOM = -\frac(\pi)(4)ดังนั้น: พิกัดของจุด M เท่ากับ -\frac(\sqrt(2))(2), abscissa เท่ากับ \frac(\sqrt(2))(2)และนั่นคือเหตุผล

\sin \left (-\frac(\pi)(4) \right)=-\frac(\sqrt(2))(2);

\cos \left (\frac(\pi)(4) \right)=\frac(\sqrt(2))(2);

ทีจี;

กะรัต \left (-\frac(\pi)(4) \right)=-1.

ตารางค่าไซน์ของโคไซน์ของแทนเจนต์ของโคแทนเจนต์

ค่าของมุมหลักที่เกิดขึ้นบ่อยแสดงอยู่ในตาราง:

0^(\วงกลม) (0)30^(\circ)\left(\frac(\pi)(6)\right) 45^(\circ)\left(\frac(\pi)(4)\right) 60^(\circ)\left(\frac(\pi)(3)\right) 90^(\circ)\left(\frac(\pi)(2)\right) 180^(\circ)\left(\pi\right)270^(\circ)\left(\frac(3\pi)(2)\right) 360^(\circ)\left(2\pi\right)
\บาป\อัลฟา0 \frac12\frac(\sqrt 2)(2)\frac(\sqrt 3)(2)1 0 −1 0
\คอส\อัลฟา1 \frac(\sqrt 3)(2)\frac(\sqrt 2)(2)\frac120 −1 0 1
tg\alpha0 \frac(\sqrt 3)(3)1 \sqrt30 0
CTG\อัลฟ่า\sqrt31 \frac(\sqrt 3)(3)0 0

ตรีโกณมิติเป็นวิทยาศาสตร์ที่มีต้นกำเนิดในตะวันออกโบราณ อันดับแรก อัตราส่วนตรีโกณมิติได้รับการพัฒนาโดยนักดาราศาสตร์เพื่อสร้างปฏิทินที่แม่นยำและนำทางโดยดวงดาว การคำนวณเหล่านี้เกี่ยวข้องกับตรีโกณมิติทรงกลม ในขณะที่ในหลักสูตรของโรงเรียน การคำนวณเหล่านี้จะศึกษาอัตราส่วนของด้านและมุมของรูปสามเหลี่ยมระนาบ

ตรีโกณมิติเป็นสาขาหนึ่งของคณิตศาสตร์ที่เกี่ยวข้องกับคุณสมบัติของ ฟังก์ชันตรีโกณมิติและความสัมพันธ์ระหว่างด้านและมุมของรูปสามเหลี่ยม

ในช่วงรุ่งเรืองของวัฒนธรรมและวิทยาศาสตร์ในคริสต์สหัสวรรษที่ 1 ความรู้แพร่กระจายมาจาก ตะวันออกโบราณถึงกรีซ แต่การค้นพบตรีโกณมิติที่สำคัญคือข้อดีของคนในศาสนาอิสลามแห่งอาหรับ โดยเฉพาะอย่างยิ่งนักวิทยาศาสตร์ชาวเติร์กเมนิสถานอัล-มาราซวีได้แนะนำฟังก์ชันต่างๆ เช่น แทนเจนต์และโคแทนเจนต์ และรวบรวมตารางค่าแรกสำหรับไซน์ แทนเจนต์ และโคแทนเจนต์ แนวคิดเรื่องไซน์และโคไซน์ได้รับการแนะนำโดยนักวิทยาศาสตร์ชาวอินเดีย ตรีโกณมิติได้รับความสนใจอย่างมากในผลงานของบุคคลสำคัญในสมัยโบราณเช่น Euclid, Archimedes และ Eratosthenes

ปริมาณพื้นฐานของตรีโกณมิติ

ฟังก์ชันตรีโกณมิติพื้นฐานของอาร์กิวเมนต์ตัวเลข ได้แก่ ไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ แต่ละคนมีกราฟของตัวเอง: ไซน์, โคไซน์, แทนเจนต์และโคแทนเจนต์

สูตรในการคำนวณค่าของปริมาณเหล่านี้จะขึ้นอยู่กับทฤษฎีบทพีทาโกรัส เด็กนักเรียนเป็นที่รู้จักกันดีในสูตร: "กางเกงพีทาโกรัสมีความเท่าเทียมกันในทุกทิศทาง" เนื่องจากการพิสูจน์ให้ไว้โดยใช้ตัวอย่างของสามเหลี่ยมหน้าจั่วหน้าจั่ว

ความสัมพันธ์ไซน์ โคไซน์ และความสัมพันธ์อื่นๆ สร้างความสัมพันธ์ระหว่างมุมแหลมและด้านของสามเหลี่ยมมุมฉากใดๆ ให้เรานำเสนอสูตรสำหรับการคำนวณปริมาณเหล่านี้สำหรับมุม A และติดตามความสัมพันธ์ระหว่างฟังก์ชันตรีโกณมิติ:

อย่างที่คุณเห็น tg และ ctg เป็นฟังก์ชันผกผัน ถ้าเราจินตนาการว่าขา a เป็นผลคูณของ sin A และด้านตรงข้ามมุมฉาก c และขา b เป็น cos A * c เราจะได้สูตรต่อไปนี้สำหรับแทนเจนต์และโคแทนเจนต์:

วงกลมตรีโกณมิติ

ความสัมพันธ์ระหว่างปริมาณดังกล่าวสามารถแสดงได้ดังนี้:

ในกรณีนี้ วงกลมแสดงถึงค่าที่เป็นไปได้ทั้งหมดของมุม α - ตั้งแต่ 0° ถึง 360° ดังที่เห็นจากรูป แต่ละฟังก์ชันจะใช้ค่าลบหรือบวกขึ้นอยู่กับมุม ตัวอย่างเช่น sin α จะมีเครื่องหมาย "+" หาก α อยู่ในควอเตอร์ที่ 1 และ 2 ของวงกลม นั่นคือ มันอยู่ในช่วงตั้งแต่ 0° ถึง 180° สำหรับ α ตั้งแต่ 180° ถึง 360° (ไตรมาส III และ IV) sin α สามารถเป็นค่าลบได้เท่านั้น

มาลองสร้างกัน ตารางตรีโกณมิติสำหรับมุมเฉพาะและหาค่าของปริมาณ

ค่า α เท่ากับ 30°, 45°, 60°, 90°, 180° และอื่นๆ เรียกว่ากรณีพิเศษ ค่าของฟังก์ชันตรีโกณมิติสำหรับฟังก์ชันเหล่านี้จะถูกคำนวณและนำเสนอในรูปแบบของตารางพิเศษ

มุมเหล่านี้ไม่ได้ถูกเลือกโดยการสุ่ม คำว่า π ในตารางเป็นชื่อเรเดียน แรดคือมุมที่ความยาวของส่วนโค้งของวงกลมสอดคล้องกับรัศมี ค่านี้ถูกนำมาใช้เพื่อสร้างการพึ่งพาสากลเมื่อคำนวณเป็นเรเดียนความยาวจริงของรัศมีเป็นซม. ไม่สำคัญ

มุมในตารางสำหรับฟังก์ชันตรีโกณมิติสอดคล้องกับค่าเรเดียน:

ดังนั้น จึงไม่ยากที่จะเดาว่า 2π เป็นวงกลมที่สมบูรณ์หรือ 360°

คุณสมบัติของฟังก์ชันตรีโกณมิติ: ไซน์และโคไซน์

ในการพิจารณาและเปรียบเทียบคุณสมบัติพื้นฐานของไซน์และโคไซน์ แทนเจนต์และโคแทนเจนต์ จำเป็นต้องวาดฟังก์ชันของพวกมัน ซึ่งสามารถทำได้ในรูปแบบของเส้นโค้งที่อยู่ในระบบพิกัดสองมิติ

พิจารณาตารางเปรียบเทียบคุณสมบัติของไซน์และโคไซน์:

คลื่นไซน์โคไซน์
y = บาปxy = cos x
โอดีแซด [-1; 1]โอดีแซด [-1; 1]
บาป x = 0 สำหรับ x = πk โดยที่ k ϵ Zcos x = 0 สำหรับ x = π/2 + πk โดยที่ k ϵ Z
sin x = 1 สำหรับ x = π/2 + 2πk โดยที่ k ϵ Zcos x = 1 ที่ x = 2πk โดยที่ k ϵ Z
sin x = - 1 ที่ x = 3π/2 + 2πk โดยที่ k ϵ Zcos x = - 1 สำหรับ x = π + 2πk โดยที่ k ϵ Z
sin (-x) = - sin x นั่นคือฟังก์ชันเป็นเลขคี่cos (-x) = cos x นั่นคือฟังก์ชันเป็นเลขคู่
ฟังก์ชันเป็นแบบคาบ คาบที่เล็กที่สุดคือ 2π
sin x › 0 โดยที่ x อยู่ในควอเตอร์ที่ 1 และ 2 หรือตั้งแต่ 0° ถึง 180° (2πk, π + 2πk)cos x › 0 โดยที่ x อยู่ในควอเตอร์ I และ IV หรือตั้งแต่ 270° ถึง 90° (- π/2 + 2πk, π/2 + 2πk)
sin x ‹ 0 โดยที่ x อยู่ในควอเตอร์ที่สามและสี่ หรือตั้งแต่ 180° ถึง 360° (π + 2πk, 2π + 2πk)cos x ‹ 0 โดยที่ x อยู่ในควอเตอร์ที่ 2 และ 3 หรือตั้งแต่ 90° ถึง 270° (π/2 + 2πk, 3π/2 + 2πk)
เพิ่มขึ้นในช่วงเวลา [- π/2 + 2πk, π/2 + 2πk]เพิ่มขึ้นในช่วงเวลา [-π + 2πk, 2πk]
ลดลงในช่วงเวลา [π/2 + 2πk, 3π/2 + 2πk]ลดลงตามช่วงเวลา
อนุพันธ์ (บาป x)’ = cos xอนุพันธ์ (cos x)’ = - sin x

การพิจารณาว่าฟังก์ชันเป็นเลขคู่หรือไม่นั้นง่ายมาก ก็เพียงพอแล้วที่จะจินตนาการถึงวงกลมตรีโกณมิติที่มีสัญลักษณ์ของปริมาณตรีโกณมิติและ "พับ" กราฟทางจิตใจที่สัมพันธ์กับแกน OX ถ้าสัญญาณตรงกัน ฟังก์ชันจะเป็นเลขคู่ ไม่เช่นนั้นจะเป็นเลขคี่

การแนะนำเรเดียนและการแสดงรายการคุณสมบัติพื้นฐานของคลื่นไซน์และโคไซน์ทำให้เราสามารถนำเสนอรูปแบบต่อไปนี้:

มันง่ายมากที่จะตรวจสอบว่าสูตรถูกต้อง ตัวอย่างเช่น สำหรับ x = π/2 ไซน์คือ 1 เช่นเดียวกับโคไซน์ของ x = 0 การตรวจสอบสามารถทำได้โดยการปรึกษาตารางหรือโดยการติดตามเส้นโค้งของฟังก์ชันสำหรับค่าที่กำหนด

คุณสมบัติของแทนเจนต์ซอยด์และโคแทนเจนต์ซอยด์

กราฟของฟังก์ชันแทนเจนต์และโคแทนเจนต์แตกต่างอย่างมีนัยสำคัญจากฟังก์ชันไซน์และโคไซน์ ค่า tg และ ctg เป็นส่วนกลับของกันและกัน

  1. Y = สีแทน x
  2. แทนเจนต์มีแนวโน้มที่จะมีค่า y ที่ x = π/2 + πk แต่ไม่เคยไปถึงค่าเหล่านั้น
  3. คาบบวกที่น้อยที่สุดของแทนเจนตอยด์คือ π
  4. Tg (- x) = - tg x เช่น ฟังก์ชันเป็นเลขคี่
  5. Tg x = 0 สำหรับ x = πk
  6. ฟังก์ชั่นกำลังเพิ่มขึ้น
  7. Tg x › 0 สำหรับ x ϵ (πk, π/2 + πk)
  8. Tg x ‹ 0 สำหรับ x ϵ (— π/2 + πk, πk)
  9. อนุพันธ์ (tg x)’ = 1/cos 2 ⁡x

พิจารณาภาพกราฟิกของโคแทนเจนตอยด์ด้านล่างในข้อความ

คุณสมบัติหลักของโคแทนเจนตอยด์:

  1. Y = เปล x
  2. ต่างจากฟังก์ชันไซน์และโคไซน์ในแทนเจนต์อยด์ Y สามารถใช้ค่าของเซตของจำนวนจริงทั้งหมดได้
  3. โคแทนเจนตอยด์มีแนวโน้มที่จะมีค่า y ที่ x = πk แต่ไม่เคยไปถึงค่าเหล่านั้น
  4. คาบบวกที่น้อยที่สุดของโคแทนเจนตอยด์คือ π
  5. Ctg (- x) = - ctg x นั่นคือฟังก์ชันเป็นเลขคี่
  6. CTG x = 0 สำหรับ x = π/2 + πk
  7. ฟังก์ชันกำลังลดลง
  8. Ctg x › 0 สำหรับ x ϵ (πk, π/2 + πk)
  9. Ctg x ‹ 0, สำหรับ x ϵ (π/2 + πk, πk)
  10. อนุพันธ์ (ctg x)’ = - 1/sin 2 ⁡x ถูกต้อง

หนึ่งในสาขาวิชาคณิตศาสตร์ที่นักเรียนประสบปัญหามากที่สุดคือวิชาตรีโกณมิติ ไม่น่าแปลกใจ: เพื่อที่จะเชี่ยวชาญความรู้ด้านนี้ได้อย่างอิสระคุณต้องมีความคิดเชิงพื้นที่ความสามารถในการค้นหาไซน์โคไซน์แทนเจนต์โคแทนเจนต์โดยใช้สูตรลดความซับซ้อนของนิพจน์และสามารถใช้ตัวเลข pi ได้ การคำนวณ นอกจากนี้ คุณต้องสามารถใช้ตรีโกณมิติในการพิสูจน์ทฤษฎีบทได้ และต้องใช้หน่วยความจำทางคณิตศาสตร์ที่พัฒนาแล้วหรือความสามารถในการหาลูกโซ่เชิงตรรกะที่ซับซ้อน

ต้นกำเนิดของตรีโกณมิติ

การทำความคุ้นเคยกับวิทยาศาสตร์นี้ควรเริ่มต้นด้วยคำจำกัดความของไซน์ โคไซน์ และแทนเจนต์ของมุม แต่ก่อนอื่นคุณต้องเข้าใจว่าโดยทั่วไปตรีโกณมิติทำอะไรได้บ้าง

ในอดีต วัตถุประสงค์หลักของการศึกษาในสาขาวิทยาศาสตร์คณิตศาสตร์นี้คือสามเหลี่ยมมุมฉาก การมีมุม 90 องศาทำให้สามารถดำเนินการต่างๆได้ซึ่งช่วยให้สามารถกำหนดค่าของพารามิเตอร์ทั้งหมดของภาพที่เป็นปัญหาได้โดยใช้สองด้านและหนึ่งมุมหรือสองมุมและด้านเดียว ในอดีต ผู้คนสังเกตเห็นรูปแบบนี้และเริ่มนำไปใช้อย่างจริงจังในการก่อสร้างอาคาร การนำทาง ดาราศาสตร์ และแม้กระทั่งในงานศิลปะ

ขั้นแรก

ในตอนแรก ผู้คนพูดถึงความสัมพันธ์ระหว่างมุมและด้านโดยใช้ตัวอย่างของสามเหลี่ยมมุมฉากโดยเฉพาะ จากนั้นจึงค้นพบสูตรพิเศษที่ทำให้สามารถขยายขอบเขตการใช้งานได้ ชีวิตประจำวันคณิตศาสตร์สาขานี้

การศึกษาวิชาตรีโกณมิติในโรงเรียนในปัจจุบันเริ่มต้นด้วยสามเหลี่ยมมุมฉาก หลังจากนั้นนักเรียนจะใช้ความรู้ที่ได้รับในวิชาฟิสิกส์และการแก้สมการตรีโกณมิติเชิงนามธรรมซึ่งเริ่มต้นในโรงเรียนมัธยมปลาย

ตรีโกณมิติทรงกลม

ต่อมา เมื่อวิทยาศาสตร์ก้าวไปสู่การพัฒนาขั้นต่อไป สูตรที่มีไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ก็เริ่มถูกนำมาใช้ในเรขาคณิตทรงกลม ซึ่งใช้กฎที่แตกต่างกัน และผลรวมของมุมในรูปสามเหลี่ยมจะมากกว่า 180 องศาเสมอ ส่วนนี้ไม่ได้เรียนที่โรงเรียน แต่จำเป็นต้องรู้เกี่ยวกับการมีอยู่ของมันอย่างน้อยก็เพราะ พื้นผิวโลกและพื้นผิวของดาวเคราะห์ดวงอื่นจะนูน ซึ่งหมายความว่าเครื่องหมายบนพื้นผิวใดๆ จะเป็น "รูปทรงโค้ง" ในอวกาศสามมิติ

เอาลูกโลกและด้าย แนบด้ายเข้ากับจุดสองจุดบนโลกเพื่อให้ตึง โปรดทราบ - มันมีรูปร่างโค้ง เรขาคณิตทรงกลมเกี่ยวข้องกับรูปแบบดังกล่าว ซึ่งใช้ในธรณีวิทยา ดาราศาสตร์ และสาขาทางทฤษฎีและประยุกต์อื่นๆ

สามเหลี่ยมมุมฉาก

เมื่อได้เรียนรู้เกี่ยวกับวิธีการใช้ตรีโกณมิติมาบ้างแล้ว เรากลับมาที่ตรีโกณมิติพื้นฐานเพื่อทำความเข้าใจเพิ่มเติมว่าไซน์ โคไซน์ แทนเจนต์คืออะไร การคำนวณใดที่สามารถทำได้ด้วยความช่วยเหลือ และสูตรที่จะใช้

ขั้นแรกคือการทำความเข้าใจแนวคิดที่เกี่ยวข้องกับรูปสามเหลี่ยมมุมฉาก ประการแรก ด้านตรงข้ามมุมฉากคือด้านที่อยู่ตรงข้ามมุม 90 องศา มันยาวที่สุด เราจำได้ว่าตามทฤษฎีบทพีทาโกรัส ค่าตัวเลขของมันจะเท่ากับรากของผลรวมของกำลังสองของอีกสองด้านที่เหลือ

ตัวอย่างเช่น หากด้านทั้งสองยาว 3 และ 4 เซนติเมตรตามลำดับ ความยาวของด้านตรงข้ามมุมฉากจะเท่ากับ 5 เซนติเมตร อย่างไรก็ตามชาวอียิปต์โบราณรู้เรื่องนี้เมื่อประมาณสี่พันห้าพันปีก่อน

ด้านที่เหลือทั้งสองซึ่งประกอบเป็นมุมฉากเรียกว่าขา นอกจากนี้ เราต้องจำไว้ว่าผลรวมของมุมในรูปสามเหลี่ยมในระบบพิกัดสี่เหลี่ยมเท่ากับ 180 องศา

คำนิยาม

ในที่สุด ด้วยความเข้าใจพื้นฐานทางเรขาคณิตอย่างมั่นคงแล้ว เราจึงสามารถหันไปหาคำจำกัดความของไซน์ โคไซน์ และแทนเจนต์ของมุมได้

ไซน์ของมุมคืออัตราส่วนของขาตรงข้าม (เช่น ด้านตรงข้ามมุมที่ต้องการ) ต่อด้านตรงข้ามมุมฉาก โคไซน์ของมุมคืออัตราส่วนของด้านประชิดกับด้านตรงข้ามมุมฉาก

โปรดจำไว้ว่าไซน์หรือโคไซน์ไม่สามารถมีค่ามากกว่าหนึ่งได้! ทำไม เพราะโดยค่าเริ่มต้นด้านตรงข้ามมุมฉากจะยาวที่สุดไม่ว่าขาจะยาวแค่ไหนก็จะสั้นกว่าด้านตรงข้ามมุมฉากซึ่งหมายความว่าอัตราส่วนจะเท่ากับเสมอ น้อยกว่าหนึ่ง. ดังนั้น หากในการตอบปัญหา คุณได้ไซน์หรือโคไซน์ที่มีค่ามากกว่า 1 ให้มองหาข้อผิดพลาดในการคำนวณหรือการให้เหตุผล คำตอบนี้ไม่ถูกต้องอย่างชัดเจน

สุดท้าย ค่าแทนเจนต์ของมุมคืออัตราส่วนของด้านตรงข้ามกับด้านประชิด การหารไซน์ด้วยโคไซน์จะให้ผลลัพธ์เดียวกัน ดู: ตามสูตร เราหารความยาวของด้านด้วยด้านตรงข้ามมุมฉาก จากนั้นหารด้วยความยาวของด้านที่สองแล้วคูณด้วยด้านตรงข้ามมุมฉาก ดังนั้นเราจึงได้ความสัมพันธ์แบบเดียวกับในคำจำกัดความของแทนเจนต์

โคแทนเจนต์คืออัตราส่วนของด้านที่อยู่ติดกับมุมต่อด้านตรงข้าม เราได้ผลลัพธ์เดียวกันโดยการหารหนึ่งด้วยแทนเจนต์

เราได้ดูคำจำกัดความของไซน์ โคไซน์ แทนเจนต์และโคแทนเจนต์แล้ว และมาดูสูตรกันต่อ

สูตรที่ง่ายที่สุด

ในตรีโกณมิติคุณไม่สามารถทำได้หากไม่มีสูตร - จะหาไซน์, โคไซน์, แทนเจนต์, โคแทนเจนต์โดยไม่มีสูตรได้อย่างไร แต่นี่คือสิ่งที่จำเป็นสำหรับการแก้ปัญหา

สูตรแรกที่คุณต้องรู้เมื่อเริ่มศึกษาตรีโกณมิติบอกว่าผลรวมของกำลังสองของไซน์และโคไซน์ของมุมเท่ากับหนึ่ง สูตรนี้เป็นผลโดยตรงจากทฤษฎีบทพีทาโกรัส แต่จะช่วยประหยัดเวลาหากคุณต้องการทราบขนาดของมุมมากกว่าด้านข้าง

นักเรียนหลายคนจำสูตรที่สองไม่ได้ ซึ่งเป็นที่นิยมอย่างมากในการแก้ปัญหาในโรงเรียนเช่นกัน ผลรวมของ 1 กับกำลังสองของแทนเจนต์ของมุมจะเท่ากับ 1 หารด้วยกำลังสองของโคไซน์ของมุม ลองดูให้ละเอียดยิ่งขึ้น: นี่เป็นข้อความเดียวกับในสูตรแรก มีเพียงทั้งสองด้านของเอกลักษณ์เท่านั้นที่ถูกหารด้วยกำลังสองของโคไซน์ ปรากฎว่าการดำเนินการทางคณิตศาสตร์อย่างง่ายทำได้ สูตรตรีโกณมิติไม่สามารถจดจำได้อย่างสมบูรณ์ ข้อควรจำ: การรู้ว่าไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์คืออะไร กฎการแปลง และอื่นๆ อีกมากมาย สูตรพื้นฐานคุณสามารถรับสูตรที่ซับซ้อนมากขึ้นที่ต้องการบนกระดาษด้วยตนเองได้ตลอดเวลา

สูตรสำหรับมุมคู่และการบวกอาร์กิวเมนต์

อีกสองสูตรที่คุณต้องเรียนรู้เกี่ยวข้องกับค่าของไซน์และโคไซน์สำหรับผลรวมและผลต่างของมุม มีการนำเสนอในรูปด้านล่าง โปรดทราบว่าในกรณีแรก ไซน์และโคไซน์จะถูกคูณทั้งสองครั้ง และในกรณีที่สอง จะมีการเพิ่มผลคูณของไซน์และโคไซน์ตามคู่

นอกจากนี้ยังมีสูตรที่เกี่ยวข้องกับอาร์กิวเมนต์มุมคู่ด้วย พวกมันได้มาจากอันก่อนหน้าอย่างสมบูรณ์ - เพื่อเป็นการฝึกฝนให้พยายามทำความเข้าใจด้วยตัวเองโดยใช้มุมอัลฟ่า เท่ากับมุมเบต้า

สุดท้าย โปรดทราบว่าสามารถจัดเรียงสูตรมุมคู่ได้ใหม่เพื่อลดกำลังของไซน์ โคไซน์ และแทนเจนต์อัลฟา

ทฤษฎีบท

ทฤษฎีบทหลักสองทฤษฎีในตรีโกณมิติพื้นฐานคือทฤษฎีบทไซน์และทฤษฎีบทโคไซน์ ด้วยความช่วยเหลือของทฤษฎีบทเหล่านี้ คุณสามารถเข้าใจวิธีการค้นหาไซน์ โคไซน์ และแทนเจนต์ รวมถึงพื้นที่ของรูปและขนาดของแต่ละด้าน ฯลฯ ได้อย่างง่ายดาย

ทฤษฎีบทไซน์ระบุว่าการหารความยาวของแต่ละด้านของรูปสามเหลี่ยมด้วยมุมตรงข้ามจะได้ผลลัพธ์เป็นจำนวนเดียวกัน ยิ่งกว่านั้น จำนวนนี้จะเท่ากับสองรัศมีของวงกลมที่จำกัดขอบเขต ซึ่งก็คือวงกลมที่มีจุดทั้งหมดของรูปสามเหลี่ยมที่กำหนด

ทฤษฎีบทโคไซน์เป็นการสรุปทฤษฎีบทพีทาโกรัสโดยฉายลงบนรูปสามเหลี่ยมใดๆ ปรากฎว่าจากผลรวมของกำลังสองของด้านสองด้าน ลบผลคูณของด้านทั้งสองคูณด้วย โคไซน์สองเท่ามุมที่อยู่ติดกัน - ค่าผลลัพธ์จะเท่ากับกำลังสองของด้านที่สาม ดังนั้น ทฤษฎีบทพีทาโกรัสจึงกลายเป็นกรณีพิเศษของทฤษฎีบทโคไซน์

ความผิดพลาดที่ไม่ระมัดระวัง

แม้จะรู้ว่าไซน์ โคไซน์ และแทนเจนต์คืออะไร ก็เป็นเรื่องง่ายที่จะทำผิดพลาดเนื่องจากขาดสติหรือเกิดข้อผิดพลาดในการคำนวณที่ง่ายที่สุด เพื่อหลีกเลี่ยงข้อผิดพลาด เรามาดูข้อผิดพลาดที่ได้รับความนิยมมากที่สุดกัน

ประการแรก คุณไม่ควรแปลงเศษส่วนเป็นทศนิยมจนกว่าคุณจะได้ผลลัพธ์สุดท้าย คุณสามารถทิ้งคำตอบไว้เป็น เศษส่วนทั่วไปเว้นแต่จะระบุไว้เป็นอย่างอื่นในเงื่อนไข การเปลี่ยนแปลงดังกล่าวไม่สามารถเรียกได้ว่าเป็นความผิดพลาด แต่ควรจำไว้ว่าในแต่ละขั้นตอนของปัญหาอาจเกิดรากใหม่ซึ่งควรลดลงตามความคิดของผู้เขียน ในกรณีนี้ คุณจะเสียเวลากับการดำเนินการทางคณิตศาสตร์ที่ไม่จำเป็น โดยเฉพาะอย่างยิ่งสำหรับค่าต่างๆ เช่น รากของสามหรือรากของสอง เนื่องจากพบปัญหาในทุกขั้นตอน เช่นเดียวกับการปัดเศษตัวเลขที่ "น่าเกลียด"

นอกจากนี้ โปรดทราบว่าทฤษฎีบทโคไซน์ใช้กับสามเหลี่ยมใดๆ ได้ แต่ไม่ใช่ทฤษฎีบทพีทาโกรัส! หากคุณลืมลบผลคูณของด้านคูณด้วยโคไซน์ของมุมระหว่างทั้งสองโดยไม่ตั้งใจ คุณจะไม่เพียงแต่ได้ผลลัพธ์ที่ผิดโดยสิ้นเชิง แต่ยังแสดงให้เห็นว่าคุณยังขาดความเข้าใจในเรื่องนั้นโดยสิ้นเชิงอีกด้วย นี่เลวร้ายยิ่งกว่าความผิดพลาดที่ไม่ระมัดระวัง

ประการที่สามอย่าสับสนค่าสำหรับมุม 30 และ 60 องศาสำหรับไซน์, โคไซน์, แทนเจนต์, โคแทนเจนต์ จำค่าเหล่านี้ไว้ เนื่องจากไซน์ของ 30 องศาเท่ากับโคไซน์ของ 60 และในทางกลับกัน มันง่ายที่จะสร้างความสับสนซึ่งส่งผลให้คุณได้รับผลลัพธ์ที่ผิดพลาดอย่างหลีกเลี่ยงไม่ได้

แอปพลิเคชัน

นักเรียนหลายคนไม่รีบร้อนที่จะเริ่มเรียนวิชาตรีโกณมิติเพราะพวกเขาไม่เข้าใจความหมายเชิงปฏิบัติของวิชาตรีโกณมิติ ไซน์ โคไซน์ แทนเจนต์สำหรับวิศวกรหรือนักดาราศาสตร์คืออะไร? แนวคิดเหล่านี้เป็นแนวคิดที่คุณสามารถคำนวณระยะทางไปยังดาวฤกษ์ที่อยู่ห่างไกล ทำนายการตกของอุกกาบาต หรือส่งยานวิจัยไปยังดาวเคราะห์ดวงอื่นได้ หากไม่มีสิ่งเหล่านี้ ก็เป็นไปไม่ได้ที่จะสร้างอาคาร ออกแบบรถยนต์ คำนวณน้ำหนักบนพื้นผิวหรือวิถีของวัตถุ และนี่เป็นเพียงตัวอย่างที่ชัดเจนที่สุด! ท้ายที่สุดแล้วมีการใช้ตรีโกณมิติในรูปแบบใดรูปแบบหนึ่งตั้งแต่ดนตรีไปจนถึงการแพทย์

ในที่สุด

คุณก็คือไซน์, โคไซน์, แทนเจนต์ คุณสามารถใช้มันในการคำนวณและแก้ปัญหาของโรงเรียนได้สำเร็จ

จุดรวมของตรีโกณมิติมาจากข้อเท็จจริงที่ว่าการใช้พารามิเตอร์ที่ทราบของรูปสามเหลี่ยมนั้น คุณจำเป็นต้องคำนวณสิ่งที่ไม่ทราบ มีทั้งหมดหกพารามิเตอร์: ความยาว สามด้านและขนาดของมุมทั้งสาม ข้อแตกต่างเพียงอย่างเดียวในงานอยู่ที่การให้ข้อมูลอินพุตที่แตกต่างกัน

ตอนนี้คุณรู้วิธีหาไซน์ โคไซน์ แทนเจนต์โดยพิจารณาจากความยาวของขาหรือด้านตรงข้ามมุมฉากที่ทราบแล้ว เนื่องจากคำเหล่านี้ไม่ได้มีความหมายอะไรมากไปกว่าอัตราส่วน และอัตราส่วนก็คือเศษส่วน เป้าหมายหลักของปัญหาตรีโกณมิติคือการหารากของสมการหรือระบบสมการปกติ และที่นี่คณิตศาสตร์ของโรงเรียนปกติจะช่วยคุณได้

เข้าร่วมการสนทนา
อ่านด้วย
บาดมาเยฟ ปีเตอร์ อเล็กซานโดรวิช
ยาทิเบต, ราชสำนัก, อำนาจโซเวียต (Badmaev P
มนต์ร้อยคำของวัชรสัตว์: การปฏิบัติที่ถูกต้อง