Подпишись и читай
самые интересные
статьи первым!

Какой процент энергии солнца достигает поверхности земли. Расчёт солнечных батарей

Солнце - неисчерпаемый, экологически безопасный и дешевый источник энергии. Как заявляют эксперты, количество солнечной энергии, которая поступает на поверхность Земли в течение недели, превышает энергию всех мировых запасов нефти, газа, угля и урана 1 . По мнению академика Ж.И. Алферова, «человечество имеет надежный естественный термоядерный реактор - Солнце. Оно является звездой класса «Ж-2», очень средней, каких в Галактике до 150 миллиардов. Но это - наша звезда, и она посылает на Землю огромные мощности, преобразование которых позволяет удовлетворять практически любые энергетические запросы человечества на многие сотни лет». Причем, солнечная энергетика является «чистой» и не оказывает отрицательного влияния на экологию планеты 2 .

Немаловажным моментом является тот факт, что сырьем для изготовления солнечных батарей является один из самых часто встречающихся элементов - кремний. В земной коре кремний - второй элемент после кислорода (29,5% по массе) 3 . По мнению многих ученых, кремний - это «нефть двадцать первого века»: в течение 30 лет один килограмм кремния в фотоэлектрической станции вырабатывает столько электричества, сколько 75 тонн нефти на тепловой электростанции.


Однако некоторые эксперты полагают, что солнечную энергетику нельзя назвать экологически безопасной ввиду того, что производство чистого кремния для фотобатарей является весьма «грязным» и очень энергозатратным производством. Наряду с этим, строительство солнечных электростанций требует отведения обширных земель, сравнимых по площади с водохранилищами ГЭС. Еще одним недостатком солнечной энергетики, по мнению специалистов, является высокая волатильность. Обеспечение эффективной работы энергосистемы, элементами которых являюстя солнечные электростанции, возможно при условии:
- наличия значительных резервных мощностей, использующих традиционные энергоносители, которые можно подключить ночью или в пасмурные дни;
- проведения масштабной и дорогостоящей модернизации электросетей 4 .

Несмотря на указанный недостаток, солнечная энергетика продолжает свое развитие в мире. Прежде всего, ввиду того, что лучистая энергия будет дешеветь и уже через несколько лет составит весомую конкуренцию нефти и газу.

В настоящий момент в мире существуют фотоэлектрические установки , преобразующие солнечную энергию в электрическую на основе метода прямого преобразования, и термодинамические установки , в которых солнечная энергия сначала преобразуется в тепло, затем в термодинамическом цикле тепловой машины преобразуется в механическую энергию, а в генераторе преобразуется в электрическую.

Солнечные элементы как источник энергии могут применяться:
- в промышленности (авиапромышленность, автомобилестроение и т.п.),
- в сельском хозяйстве,
- в бытовой сфере,
- в строительной сфере (например, эко-дома),
- на солнечных электростанциях,
- в автономных системах видеонаблюдения,
- в автономных системах освещения,
- в космической отрасли.

По данным Института Энергетической стратегии, теоретический потенциал солнечной энергетики в России составляет более 2300 млрд. тонн условного топлива, экономический потенциал - 12,5 млн. т.у.т. Потенциал солнечной энергии, поступающей на территорию России в течение трех дней, превышает энергию всего годового производства электроэнергии в нашей стране.
Ввиду расположения России (между 41 и 82 градусами северной широты) уровень солнечной радиации существенно варьируется: от 810 кВт-час/м 2 в год в отдаленных северных районах до 1400 кВт-час/м 2 в год в южных районах. На уровень солнечной радиации оказывают влияние и большие сезонные колебания: на ширине 55 градусов солнечная радиация в январе составляет 1,69 кВт-час/м 2 , а в июле - 11,41 кВт-час/м 2 в день.

Потенциал солнечной энергии наиболее велик на юго-западе (Северный Кавказ, район Черного и Каспийского морей) и в Южной Сибири и на Дальнем Востоке.

Наиболее перспективные регионы в плане использования солнечной энергетики: Калмыкия, Ставропольский край, Ростовская область, Краснодарский край, Волгоградская область, Астраханская область и другие регионы на юго-западе, Алтай, Приморье, Читинская область, Бурятия и другие регионы на юго-востоке. Причем некоторые районы Западной и Восточной Сибири и Дальнего Востока превосходит уровень солнечной радиации южных регионов. Так, например, в Иркутске (52 градуса северной широты) уровень солнечной радиации достигает 1340 кВТ-час/м 2 , тогда как в Республике Якутия-Саха (62 градуса северной широты) данный показатель равен 1290 кВт-час/м 2 . 5

В настоящее время Россия обладает передовыми технологиями по преобразованию солнечной энергии в электрическую. Есть ряд предприятий и организаций, которые разработали и совершенствуют технологии фотоэлектрических преобразователей: как на кремниевых, так и на многопереходных структурах. Есть ряд разработок использования концентрирующих систем для солнечных электростанций.

Законодательная база в сфере поддержки развития солнечной энергетики в России находится в зачаточном состоянии. Однако первые шаги уже сделаны:
- 3 июля 2008г.: Постановление Правительства №426 «О квалификации генерирующего объекта, функционирующего на основе использования возобновляемых источников энергии»;
- 8 января 2009г.: Распоряжение Правительства РФ N 1-р «Об Основных направлениях государственной политики в сфере повышения энергетической эффективности электроэнергетики на основе использования возобновляемых источников энергии на период до 2020 г.»

Были утверждены целевые показатели по увеличению к 2015 и 2020 годам доли ВИЭ в общем уровне российского энергобаланса до 2,5% и 4,5% соответственно 6 .

По разным оценкам, на данный момент в России суммарный объем введенных мощностей солнечной генерации составляет не более 5 МВт, большая часть из которых приходится на домохозяйства. Самым крупным промышленным объектом в российской солнечной энергетике является введенная в 2010 году солнечная электростанция в Белгородской области мощностью 100 кВт (для сравнения, самая крупнейшая солнечная электростанция в мире располагается в Канаде мощностью 80000 кВт).

В настоящий момент в России реализуется два проекта: строительство солнечных парков в Ставропольском крае (мощность - 12 МВТ), и в Республике Дагестан (10 МВт) 7 . Несмотря на отсутствие поддержки возобновляемой энергетики, ряд компаний реализует мелкие проекты в сфере солнечной энергетике. К примеру, «Сахаэнерго» установило маленькую станцию в Якутии мощностью 10 кВт.

Существуют маленькие установки в Москве: в Леонтьевском переулке и на Мичуринском проспекте подъезды и дворы нескольких домов освещаются с помощью солнечных модулей, что сократило расходы на освещение на 25%. На Тимирязевской улице солнечные батареи установлены на крыше одной из автобусных остановок, которые обеспечивают работу справочно-информационной транспортной системы и Wi-Fi.

Развитие солнечной энергетики в России обусловлено рядом факторов:

1) климатические условия: данный фактор влияет не только на год достижения сетевого паритета, но и на выбор той технологии солнечной установки, которая наилучшим образом подходит для конкретного региона;

2) государственная поддержка: наличие законодательно установленных экономических стимулов солнечной энергетики оказывает решающее значение на
ее развитие. Среди видов государственной поддержки, успешно применяющихся в ряде стран Европы и США, можно выделить: льготный тариф для солнечные электростанции, субсидии на строительство солнечных электростанций, различные варианты налоговых льгот, компенсация части расходов по обслуживанию кредитов на приобретение солнечных установок;

3) стоимость СФЭУ (солнечные фотоэлектрические установки): сегодня солнечные электростанции являются одной из наиболее дорогих используемых технологий производства электроэнергии. Однако по мере снижения стоимости 1 кВт*ч выработанной электроэнергии солнечная энергетика становится конкурентоспособной. От снижения стоимости 1Вт установленной мощности СФЭУ (~3000$ в 2010 году) зависит спрос на СФЭУ. Снижение стоимости достигается за счет повышения КПД, снижения технологических затрат и снижения рентабельности производства (влияние конкуренции). Потенциал снижения стоимости 1 кВт мощности зависит от технологии и лежит в диапазоне от 5% до 15% в год;

4) экологические нормы: на рынок солнечной энергетики положительно может повлиять ужесточение экологических норм (ограничений и штрафов) вследствие возможного пересмотра Киотского протокола. Совершенствование механизмов продажи квот на выбросы может дать новый экономический стимул для рынка СФЭУ;

5) баланс спроса и предложения электроэнергии: реализация существующих амбициозных планов по строительству и реконструкции генерирующих и электросетевых
мощностей компаний, выделившихся из РАО «ЕЭС России» в ходе реформы отрасли, существенно увеличит предложение электроэнергии и может усилить давление на цену
на оптовом рынке. Однако выбытие старых мощностей и одновременное повышение спроса повлечет за собой увеличение цены;

6) наличие проблем с технологическим присоединением: задержки с выполнением заявок на технологическое присоединение к централизованной системе электроснабжения являются стимулом к переходу к альтернативным источникам энергии, в том числе к СФЭУ. Такие задержки определяются как объективной нехваткой мощностей, так и неэффективностью организации технологического присоединения сетевыми компаниями или недостатком финансирования технологического присоединения из тарифа;

7) инициативы местных властей: региональные и муниципальные органы управления могут реализовывать собственные программы по развитию солнечной энергетики или, более широко, возобновляемых/нетрадиционных источников энергии. Сегодня такие программы уже реализуются в Красноярском и Краснодарском краях, Республике Бурятия и др.;

8) развитие собственного производства: российское производство СФЭУ может оказать положительное влияние на развитие российского потребления солнечной энергетики. Во-первых, благодаря собственному производству усиливается общая осведомленность населения о наличии солнечных технологий и их популярность. Во-вторых, снижается стоимость СФЭУ для конечных потребителей за счет снижения промежуточных звеньев дистрибьюторской цепи и за счет снижения транспортной составляющей 8 .

6 http://www.ng.ru/energy/2011-10-11/9_sun_energy.html
7 Организатор - компания ООО «Хевел», учредителями которой являются Группа компаний «Ренова» (51%) и Государственная корпорация «Российская корпорация нанотехнологий» (49%).

Солнце – это звезда, внутри которой, в непрерывном режиме, происходят термоядерные реакции. Результатом происходящих процессов, с поверхности солнца выделяется колоссальное количество энергии, часть которой нагревает атмосферу нашей планеты.

Солнечная энергия — это источник жизни на планете Земля. Наша планета, и все живые организмы, существующие на ней, получает энергию солнца в виде солнечного света и тепла.

Солнечная энергия является источником возобновляемой и экологически чистой энергии.

Солнечная энергия как альтернативный источник энергии

Способы преобразования энергии солнца для получения различных видов энергии, используемой человеком, можно разделить по видам получаемой энергии и способам ее получения, это:

Преобразование в электрическую энергию

Путем применения фотоэлектрических элементов

Фотоэлектрические элементы используются для изготовления солнечных панелей, которые служат приемниками солнечной энергии в системах солнечных электрических станций. Принцип работы основан на получении разности потенциалов внутри фотоэлемента при попадании на него солнечного света.

Панели различаются по структуре (поликристаллические, монокристаллические, с напылением кремния), габаритным размерам и мощности.

Путем применения термоэлектрических генераторов.

  • Термоэлектрический генератор – это техническое устройство, позволяющее получать электрическую энергию из тепловой энергии. Принцип действия основан на преобразовании энергии получаемой из-за разности температур на разных частях элементов конструкции (термоэлектродвижущая сила).

Преобразование в тепловую энергию

Путем использования коллекторов различных типов и конструкций.

  • Вакуумные коллекторы — трубчатого вида и в виде плоских коллекторов.

Принцип действия — под воздействием солнечных лучей, нагревается специальная жидкость, которая при достижении определённых параметров, начинает испаряться, после чего пар передает свою энергию теплоносителю. Отдав тепловую энергию пар конденсируется и процесс повторяется.

  • Плоские коллекторы – представляют из себя каркас с теплоизоляцией и абсорбер покрытые стеклом, с патрубками для входа и выхода теплоносителя.

Принцип действия — потоки солнечного света попадают на абсорбер и нагревают его, тепло с абсорбера переходит теплоносителю.
Путем использования гелиотермальных установок.

Принцип действия основан на нагревании поверхности способной поглощать солнечные лучи. Солнечные лучи фокусируются и посредством устройства линз концентрируются, после чего направляются на принимающее устройство, где энергия солнца передается для накопления или передачи потребителю посредством теплоносителя.

Распространение в России

Солнечная энергетика получает все более широкое распространение в разных странах и на разных континентах. Россия не является исключением из этой тенденции. Причиной более широкого распространения в последние годы стало:

  • Развитие новых технологий, позволившее снизить стоимость оборудования;
  • Желание людей иметь независимый источник энергии;
  • Чистота производства получаемой энергии («зеленая энергетика»);
  • Возобновляемый источник энергии.

Потенциалом для развития солнечной энергетики обладают южные районы нашей страны – республики Кавказа, Краснодарский и Ставропольский край, южные районы Сибири и Дальнего Востока.
Районы различаются по инсоляции в течение суток и времени года, так для разных регионов поток солнечной радиации, в летний период, составляет:

По состоянию на начало 2017 года мощность работающих солнечных электростанций на территории России составляет 0,03% от мощности электростанции энергетической системы нашей страны. В цифрах – это составляет 75,2 МВт.

Солнечные электростанции работают в

  • Оренбургской области:
    «Сакмарская им. А. А. Влазнева», установленной мощностью 25 МВт;
    «Переволоцкая», установленной мощностью 5,0 МВт.
  • Республике Башкортостан:
    «Бурибаевская», установленной мощностью 20,0 МВт;
    «Бугульчанская», установленной мощностью 15,0 МВт.
  • Республике Алтай:
    «Кош-Агачская», установленной мощностью 10,0 МВт;
    «Усть-Канская», установленной мощностью 5,0 МВт.
  • Республике Хакасия:
    «Абаканская», установленной мощностью 5,2 МВт.
  • Белгородской области:
    «АльтЭнерго», установленной мощностью 0,1 МВт.
  • В Республике Крым , независимо от Единой энергетической системы страны, работает 13 солнечных электрических станций, общей мощностью 289,5 МВт.
  • Также, вне системы работает станция в Республике Саха-Якутия (1,0 МВт) и в Забайкальском крае (0,12 МВт).

В стадии разработки проекта и строительства находятся электростанции

  • В Алтайском крае , 2 станции, общей проектируемой мощностью 20,0 МВт, запуск в работу планируется в 2019 году.
  • В Астраханской области , 6 станций, общей проектируемой мощностью 90,0 МВт, запуск в работу планируется в 2017 году.
  • В Волгоградской области , 6 станций, общей проектируемой мощностью 100,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Забайкальском крае , 3 станции, общей проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Иркутской области , 1 станция, проектируемой мощностью 15,0 МВт, запуск в работу планируется в 2018 году.
  • В Липецкой области , 3 станции, общей проектируемой мощностью 45,0 МВт, запуск в работу планируется в 2017 году.
  • В Омской области , 2 станции, проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2019 году.
  • В Оренбургской области , 7 станция, проектированной мощностью 260,0 МВт, запуск в работу планируется в 2017-2019 годах.
  • В Республике Башкортостан , 3 станции, проектируемой мощностью 29,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Республике Бурятия , 5 станции, проектируемой мощностью 70,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Республике Дагестан , 2 станции, проектируемой мощностью 10,0 МВт, запуск в работу планируется в 2017 году.
  • В Республике Калмыкия, 4 станции, проектируемой мощностью 70,0 МВт, запуск в работу планируется в 2017 и 2019 году.
  • В Самарской области , 1 станция, проектируемой мощностью 75,0 МВт, запуск в работу планируется в 2018 году.
  • В Саратовской области , 3 станции, проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Ставропольском крае , 4 станции, проектируемой мощностью 115,0 МВт, запуск в работу планируется в 2017-2019 годы.
  • В Челябинской области , 4 станции, проектируемой мощностью 60,0 МВт, запуск в работу планируется в 2017 и 2018 году.

Общая проектируемая мощность солнечных электрических станций, находящихся в стадии разработки и строительства, составляет – 1079,0 МВт.

Термоэлектрические генераторы, гелиоколлекторы и гелиотермальные установки также широко применяются на промышленных предприятиях и в повседневной жизни. Вариант и способ использования выбирает каждый для себя сам.

Количество технических устройств, использующих энергию солнца для выработки электрической и тепловой энергий, а также количество строящихся солнечных электрических станций, их мощность, говорят сами за себя — в России альтернативным источникам энергии быть и развиваться.

Пригодна ли для обычного дома

  • Для бытового использования гелиоэнергетика — перспективный вид энергетики.
  • В качестве источника электрической энергии, для жилых домов, используют солнечные электрические станции, которые выпускают промышленные предприятия в России и за ее пределами. Установки выпускаются различной мощности и комплектации.
  • Использование теплового насоса — обеспечит жилой дом горячей водой, подогреет воду в бассейне, нагреет теплоноситель в системе отопления или воздух внутри помещений.
  • Гелиоколлекторы — можно использовать в системах отопления домов и горячего водоснабжения. Более эффективны, в этом случае, вакуумные трубчатые коллекторы.

Плюсы и минусы

К достоинствам солнечной энергетики относятся :

  • Экологическая безопасность установок;
  • Неисчерпаемость источника энергии в далекой перспективе;
  • Низкая себестоимость получаемой энергии;
  • Доступность производства энергии;
  • Хорошие перспективы развития отрасли, обусловленные развитием технологий и производством новых материалов с улучшенными характеристиками.

Недостатками являются :

  • Прямая зависимость количества вырабатываемой энергии от погодные условия, времени суток и времени года;
  • Сезонность работы, которую определяет географическое расположение;
  • Низкий КПД;
  • Высокая стоимость оборудования.

Перспективы

Перспективы развития данной отрасли энергетики обусловлены положительными и отрицательными свойствами присущим гелиоустановкам. Если с достоинствами все понятно, то с недостатками предстоит работать инженерам и разработчикам оборудования и материалов.
Факторами, вызывающими здоровый оптимизм, по развитию альтернативных источников энергии, являются:

  1. Запасы традиционных источников энергии постоянно сокращаются, что обуславливает рост их стоимости.
  2. Технический прогресс постоянно идет, появляются новые материалы и технологии, и что, в свою очередь, приводит к уменьшению стоимости оборудования и повышению КПД установок.
  3. Политика государства в энергетической области направлена на развитие альтернативной энергетики, о чем были приняты постановления правительства и соответствующие программы, как то:

Россия – большая страна, поэтому для успешного развития всех отраслей промышленности и комфортного проживания людей во всех регионах, необходимо наличие запасов различных видов энергии. В связи с этим альтернативные источники все более прочно входят в общую систему энергоснабжения страны, обеспечивая самые отдаленные города и поселки источниками электричества и тепла.

Рост цен на энергоносители в России заставляет проявлять интерес к дешевым источникам энергии. Наиболее доступной является солнечная энергия. Энергия солнечной радиации, падающая на Землю в 10 000 раз превышает количество вырабатываемой человечеством энергии. Проблемы возникают в технологии сбора энергии и в связи с неравномерностью поступления энергии на гелиоустановки. Поэтому солнечные коллекторы и солнечные батареи применяются или совместно с аккумуляторами энергии или в качестве средства дополнительной подпитки для основной энергетической установки.

Страна у нас обширна и картина распределения солнечной энергии по ее территории весьма разнообразна.

Усредненные данные поступления солнечной энергии

Интенсивность поступления солнечной энергии

Зоны максимальной интенсивности солнечного излучения. На 1 квадратный метр поступает более 5 кВт. час. солнечной энергии в день.

По южной границе России от Байкала до Владивостока, в районе Якутска, на юге Республики Тыва и Республики Бурятия, как это не странно, за Полярным Кругом в восточной части Северной Земли.

Поступление солнечной энергии от 4 до 4,5 кВт. час на 1 кв. метр в день

Краснодарский край, Северный Кавказ, Ростовская область, южная часть Поволжья, южные районы Новосибирской, Иркутской областей, Бурятия, Тыва, Хакассия, Приморский и Хабаровский край, Амурская область, остров Сахалин, обширные территории от Красноярского края до Магадана, Северная Земля, северо-восток Ямало-Ненецкого АО.

От 2,5 до 3 кВт. час на кв. метр в день

По западной дуге - Нижний Новгород, Москва, Санкт-Петербург, Салехард, восточная часть Чукотки и Камчатка.

От 3 до 4 кВт. час на 1 кв. метр в день

Остальная территория страны.

Продолжительность солнечного сияния в год

Наибольшую интенсивность поток энергии имеет в мае, июне и июле. В этот период в средней полосе России на 1 кв. метр поверхности приходится 5 кВт. час в день. Наименьшая интенсивность в декабре-январе, когда 1 кв. метр поверхности приходится 0,7 кВт. час в день.

Особенности установки

Если установить солнечный коллектор под углом 30 градусов к поверхности, то можно обеспечить съем энергии в максимальном и минимальном режиме соответственно 4,5 и 1.5 кВт час на 1 кв. метр. в день.

Распределение интенсивности солнечного излучния в средней полосе России по месяцам

Исходя из приведенных данных можно рассчитать площадь плоских солнечных коллекторов, необходимую для обеспечения горячего водоснабжения семьи из 4-х человек в индивидуальном доме. Нагрев 300 литров воды от 5 градусов до 55 градусов в июне могут обеспечить коллекторы площадью 5,4 квадратного метра, в декабре 18 кв. метров. Если применить более эффективные вакуумные коллекторы, то требуемая площадь коллекторов снижается примерно вдвое.

Покрытие потребностей в ГВС на счет солнечной энергии

На практике солнечные коллекторы желательно применять не в качестве основного источника ГВС, а в качестве устройства для подогрева воды, поступающей в отопительную установку. В этом случае расход топлива резко снижается. При этом обеспечивается бесперебойная подача горячей воды и экономия средств на ГВС и отопление дома, если это дом для постоянного проживания. На дачах, в летнее время, для получения горячей воды, применяются различные виды солнечных коллекторов. От коллекторов заводского изготовления до самодельных устройств, изготовленных из подручных материалов. Различаются они, прежде всего, по эффективности. Заводской эффективнее, но стоит дороже. Практически бесплатно можно сделать коллектор с теплообменником от старого холодильника.

В России установка солнечных коллекторов регламентируется РД 34.20.115-89 "Методические указания по расчету и проектированию систем солнечного обогрева", ВСН 52-86 (в формате RTF, 11 Mb) "Установки горячего солнечного водоснабжения. Нормы проектирования". Имеются рекомендации по использованию нетрадиционных источников энергии в животноводстве, кормопроизводстве, крестьянских хозяйствах и сельском жилищном секторе, разработанные по заявке Минсельхоза в 2002 году. Действуют ГОСТ Р 51595 "Солнечные коллекторы. Технические требования", ГОСТ Р 51594 "Солнечная энергетика. Термины и определения",

В этих документах довольно подробно описаны схемы применяемых солнечных коллекторов и наиболее эффективные способы их применения в различных климатических условиях.

Солнечные коллекторы в Германии

В Германии государство дотирует затраты на установку солнечных коллекторов, поэтому их применение устойчиво растет. В 2006 году было установлено 1 миллион 300 тысяч квадратных метров коллекторов. Из этого количества примерно 10% более дорогие и эффективные вакуумные коллекторы. Общая площадь установленных на сегодняшний день солнечных коллекторов составила примерно 12 миллионов квадратных метров.

Материалы и графики предоставлены компанией Viessmann

Солнце излучает огромное количество энергии - приблизительно 1,1x10 20 кВт·ч в секунду. Киловатт·час - это количество энергии, необходимое для работы лампочки накаливания мощностью 100 ватт в течение 10 часов. Внешние слои атмосферы Земли перехватывают приблизительно одну миллионную часть энергии, излучаемой Солнцем, или приблизительно 1500 квадрильонов (1,5 x 10 18) кВт·ч ежегодно. Однако из-за отражения, рассеивания и поглощения ее атмосферными газами и аэрозолями только 47% всей энергии, или приблизительно 700 квадрильонов (7 x 10 17) кВт·ч, достигает поверхности Земли.

Солнечное излучение в атмосфере Земли делится на так называемое прямое излучение и на рассеянное на частицах воздуха, пыли, воды, и т.п., содержащихся в атмосфере. Их сумма образует суммарное солнечное излучение.
Количество энергии, падающей на единицу площади в единицу времени, зависит от ряда факторов:

· местного климата

· сезона года

· угла наклона поверхности по отношению к Солнцу.

ВРЕМЯ И МЕСТО

Количество солнечной энергии, падающей на поверхность Земли, изменяется вследствие движения Солнца. Эти изменения зависят от времени суток и времени года. Обычно в полдень на Землю попадает больше солнечной радиации, чем рано утром или поздно вечером. В полдень Солнце находится высоко над горизонтом, и длина пути прохождения лучей Солнца через атмосферу Земли сокращается. Следовательно, меньше солнечной радиации рассеивается и поглощается, а значит больше достигает поверхности.

Количество солнечной энергии, достигающей поверхности Земли, отличается от среднегодового значения: в зимнее время - менее чем на 0,8 кВт·ч/м2 в день на Севере Европы и более чем на 4 кВт·ч /м2 в день в летнее время в этом же регионе. Различие уменьшается по мере приближения к экватору.

Количество солнечной энергии зависит и от географического месторасположения участка: чем ближе к экватору, тем оно больше. Например, среднегодовое суммарное солнечное излучение, падающее на горизонтальную поверхность, составляет: в Центральной Европе, Средней Азии и Канаде - приблизительно 1000 кВт·ч/м2; в Средиземноморье - приблизительно 1700 кВт·ч /м2; в большинстве пустынных регионов Африки, Ближнего Востока и Австралии - приблизительно 2200 кВт·ч/м2.



Таким образом, количество солнечной радиации существенно различается в зависимости от времени года и географического положения (см. таблицу). Этот фактор необходимо учитывать при использовании солнечной энергии.

Количество солнечной радиации в Европе и странах Карибского бассейна, кВт·ч/м2 в день.

Южная Европа Центральная Европа Северная Европа Карибский регион
Январь 2,6 1,7 0,8 5,1
Февраль 3,9 3,2 1,5 5,6
Март 4,6 3,6 2,6 6,0
Апрель 5,9 4,7 3,4 6,2
Май 6,3 5,3 4,2 6,1
Июнь 6,9 5,9 5,0 5,9
Июль 7,5 6,0 4,4 6,0
Август 6,6 5,3 4,0 6,1
Сентябрь 5,5 4,4 3,3 5,7
Октябрь 4,5 3,3 2,1 5,3
Ноябрь 3,0 2,1 1,2 5,1
Декабрь 2,7 1,7 0,8 4,8
ГОД 5,0 3,9 2,8 5,7

ОБЛАКА

Количество солнечной радиации, достигающее поверхности Земли, зависит от различных атмосферных явлений и от положения Солнца как в течение дня, так и в течение года. Облака - основное атмосферное явление, определяющее количество солнечной радиации, достигающей поверхности Земли. В любой точке Земли солнечная радиация, достигающая поверхности Земли, уменьшается с увеличением облачности. Следовательно, страны с преобладающей облачной погодой получают меньше солнечной радиации, чем пустыни, где погода в основном безоблачная. На формирование облаков оказывает влияние наличие таких особенностей местного рельефа, как горы, моря и океаны, а также большие озера. Поэтому количество солнечной радиации, полученной в этих областях и прилегающих к ним регионах, может отличаться. Например, горы могут получить меньше солнечного излучения, чем прилегающие предгорья и равнины. Ветры, дующие в сторону гор, вынуждают часть воздуха подниматься и, охлаждая влагу, находящуюся в воздухе, формируют облака. Количество солнечной радиации в прибрежных районах также может отличаться от показателей, зафиксированных в областях, расположенных внутри континента.

Количество солнечной энергии, поступающей в течение дня, в значительной степени зависит от местных атмосферных явлений. В полдень при ясном небе суммарное солнечное излучение, попадающее на горизонтальную поверхность, может достигнуть (например, в Центральной Европе) значения в 1000 Вт/м 2 (при очень благоприятных погодных условиях этот показатель может быть выше), в то время, как при очень облачной погоде - ниже 100 Вт/м 2 даже в полдень.

ЗАГРЯЗНЕНИЕ

Антропогенные и природные явления также могут ограничивать количество солнечной радиации, достигающей поверхности Земли. Городской смог, дым от лесных пожаров и переносимый по воздуху пепел, образовавшийся в результате вулканической деятельности, снижают возможность использования солнечной энергии, увеличивая рассеивание и поглощение солнечной радиации. То есть, эти факторы в большей степени влияют на прямое солнечное излучение, чем на суммарное. При сильном загрязнении воздуха, например, при смоге, прямое излучение уменьшается на 40%, а суммарное - лишь на 15-25%. Сильное вулканическое извержение может понизить, причем на большой территории поверхности Земли, прямое солнечное излучение на 20%, а суммарное - на 10% на период от 6 месяцев до 2 лет. При уменьшении количества вулканического пепла в атмосфере эффект ослабевает, но процесс полного восстановления может занять несколько лет.

ПОТЕНЦИАЛ

Солнце обеспечивает нас в 10 000 раз большим количеством бесплатной энергии, чем фактически используется во всем мире. Только на мировом коммерческом рынке покупается и продается чуть меньше 85 триллионов (8,5 x 1013) кВт·ч энергии в год. Поскольку невозможно проследить за всем процессом в целом, нельзя с уверенностью сказать, сколько некоммерческой энергии потребляют люди (например, сколько древесины и удобрения собирается и сжигается, какое количество воды используется для производства механической или электрической энергии). Некоторые эксперты считают, что такая некоммерческая энергия составляет одну пятую часть всей используемой энергии. Но даже если это так, то общая энергия, потребляемая человечеством в течение года, составляет только приблизительно одну семитысячную часть солнечной энергии, попадающей на поверхность Земли в тот же период.

В развитых странах, например, в США, потребление энергии составляет примерно 25 триллионов (2.5 x 1013) кВт·ч в год, что соответствует более чем 260 кВт·ч на человека в день. Данный показатель является эквивалентом ежедневной работы более чем ста лампочек накаливания мощностью 100 Вт в течение целого дня. Среднестатистический гражданин США потребляет в 33 раза больше энергии, чем житель Индии, в 13 раз больше, чем китаец, в два с половиной раза больше, чем японец и вдвое больше, чем швед.

Количество солнечной энергии, попадающей на поверхность Земли, во много раз превышает ее расход даже в таких странах как США, где энергопотребление огромно. Если бы только 1% территории страны был использован для установки солнечного оборудования (фотоэлектрические батареи или солнечные системы для горячего водоснабжения), работающего с КПД 10%, то США были бы полностью обеспечены энергией. То же самое можно сказать и в отношении всех других развитых стран. Однако, в определенном смысле, это нереально - во-первых, из-за высокой стоимости фотоэлектрических систем, во-вторых, невозможно охватить такие большие территории солнечным оборудованием, не нанося вред экосистеме. Но сам принцип является верным. Можно охватить ту же самую территорию, рассредоточив установки на крышах зданий, на домах, по обочинам, на заранее определенных участках земли и т.д. К тому же, во многих странах уже более 1% земли отведено под добычу, преобразование, производство и транспортировку энергии. И, поскольку большая часть этой энергии является не возобновляемой в масштабе существования человечества, этот вид производства энергии намного более вреден для окружающей среды, чем солнечные системы.

Солнце излучает огромное количество энергии - приблизительно 1,1x1020 кВтч в секунду. Киловатт-час - это количество энергии, необходимое для работы лампочки накаливания мощностью 100 ватт в течение 10 часов. Внешние слои атмосферы Земли перехватывают приблизительно одну миллионную часть энергии, излучаемой Солнцем, или приблизительно 1500 квадрильонов (1,5 x 1018) кВт·ч ежегодно. Однако из-за отражения, рассеивания и поглощения ее атмосферными газами и аэрозолями только 47% всей энергии, или приблизительно 700 квадрильонов (7 x 1017) кВт·ч, достигает поверхности Земли.

Солнечное излучение в атмосфере Земли делится на так называемое прямое излучение и на рассеянное на частицах воздуха, пыли, воды, и т.п., содержащихся в атмосфере. Их сумма образует суммарное солнечное излучение. Количество энергии, падающей на единицу площади в единицу времени, зависит от ряда факторов:

  • широты
  • местного климата сезона года
  • угла наклона поверхности по отношению к Солнцу.

Время и географическое положение

Количество солнечной энергии, падающей на поверхность Земли, изменяется вследствие движения Солнца. Эти изменения зависят от времени суток и времени года. Обычно в полдень на Землю попадает больше солнечной радиации, чем рано утром или поздно вечером. В полдень Солнце находится высоко над горизонтом, и длина пути прохождения лучей Солнца через атмосферу Земли сокращается. Следовательно, меньше солнечной радиации рассеивается и поглощается, а значит больше достигает поверхности.

Количество солнечной энергии, достигающей поверхности Земли, отличается от среднегодового значения: в зимнее время - менее чем на 0,8 кВт·ч/м2 в день на Севере Европы и более чем на 4 кВт·ч /м2 в день в летнее время в этом же регионе. Различие уменьшается по мере приближения к экватору.


(нажмите для увеличения)

Количество солнечной энергии зависит и от географического месторасположения участка: чем ближе к экватору, тем оно больше. Например, среднегодовое суммарное солнечное излучение, падающее на горизонтальную поверхность, составляет: в Центральной Европе, Средней Азии и Канаде - приблизительно 1000 кВт·ч/м2; в Средиземноморье - приблизительно 1700 кВт·ч /м2; в большинстве пустынных регионов Африки, Ближнего Востока и Австралии - приблизительно 2200 кВт·ч/м2.

Таким образом, количество солнечной радиации существенно различается в зависимости от времени года и географического положения (см. таблицу). Этот фактор необходимо учитывать при использовании солнечной энергии.

Южная Европа Центральная Европа Северная Европа Карибский регион
Январь 2,6 1,7 0,8 5,1
Февраль 3,9 3,2 1,5 5,6
Март 4,6 3,6 2,6 6,0
Апрель 5,9 4,7 3,4 6,2
Май 6,3 5,3 4,2 6,1
Июнь 6,9 5,9 5,0 5,9
Июль 7,5 6,0 4,4 6,0
Август 6,6 5,3 4,0 6,1
Сентябрь 5,5 4,4 3,3 5,7
Октябрь 4,5 3,3 2,1 5,3
Ноябрь 3,0 2,1 1,2 5,1
Декабрь 2,7 1,7 0,8 4,8
ГОД 5,0 3,9 2,8 5,7


Влияние облаков на солнечную энергию

Количество солнечной радиации, достигающее поверхности Земли, зависит от различных атмосферных явлений и от положения Солнца как в течение дня, так и в течение года. Облака - основное атмосферное явление, определяющее количество солнечной радиации, достигающей поверхности Земли. В любой точке Земли солнечная радиация, достигающая поверхности Земли, уменьшается с увеличением облачности. Следовательно, страны с преобладающей облачной погодой получают меньше солнечной радиации, чем пустыни, где погода в основном безоблачная.

На формирование облаков оказывает влияние наличие таких особенностей местного рельефа, как горы, моря и океаны, а также большие озера. Поэтому количество солнечной радиации, полученной в этих областях и прилегающих к ним регионах, может отличаться. Например, горы могут получить меньше солнечного излучения, чем прилегающие предгорья и равнины. Ветры, дующие в сторону гор, вынуждают часть воздуха подниматься и, охлаждая влагу, находящуюся в воздухе, формируют облака. Количество солнечной радиации в прибрежных районах также может отличаться от показателей, зафиксированных в областях, расположенных внутри континента.

Количество солнечной энергии, поступающей в течение дня, в значительной степени зависит от местных атмосферных явлений. В полдень при ясном небе суммарное солнечное

излучение, попадающее на горизонтальную поверхность, может достигнуть (например, в Центральной Европе) значения в 1000 Вт/м2 (при очень благоприятных погодных условиях этот показатель может быть выше), в то время, как при очень облачной погоде - ниже 100 Вт/м2 даже в полдень.

Влияние загрязнения атмосферы на солнечную энергию

Антропогенные и природные явления также могут ограничивать количество солнечной радиации, достигающей поверхности Земли. Городской смог, дым от лесных пожаров и переносимый по воздуху пепел, образовавшийся в результате вулканической деятельности, снижают возможность использования солнечной энергии, увеличивая рассеивание и поглощение солнечной радиации. То есть, эти факторы в большей степени влияют на прямое солнечное излучение, чем на суммарное. При сильном загрязнении воздуха, например, при смоге, прямое излучение уменьшается на 40%, а суммарное - лишь на 15-25%. Сильное вулканическое извержение может понизить, причем на большой территории поверхности Земли, прямое солнечное излучение на 20%, а суммарное - на 10% на период от 6 месяцев до 2 лет. При уменьшении количества вулканического пепла в атмосфере эффект ослабевает, но процесс полного восстановления может занять несколько лет.

Потенциал солнечной энергии

Солнце обеспечивает нас в 10 000 раз большим количеством бесплатной энергии, чем фактически используется во всем мире. Только на мировом коммерческом рынке покупается и продается чуть меньше 85 триллионов (8,5 x 1013) кВт·ч энергии в год. Поскольку невозможно проследить за всем процессом в целом, нельзя с уверенностью сказать, сколько некоммерческой энергии потребляют люди (например, сколько древесины и удобрения собирается и сжигается, какое количество воды используется для производства механической или электрической энергии). Некоторые эксперты считают, что такая некоммерческая энергия составляет одну пятую часть всей используемой энергии. Но даже если это так, то общая энергия, потребляемая человечеством в течение года, составляет только приблизительно одну семитысячную часть солнечной энергии, попадающей на поверхность Земли в тот же период.

В развитых странах, например, в США, потребление энергии составляет примерно 25 триллионов (2.5 x 1013) кВт·ч в год, что соответствует более чем 260 кВт·ч на человека в день. Данный показатель является эквивалентом ежедневной работы более чем ста лампочек накаливания мощностью 100 Вт в течение целого дня. Среднестатистический гражданин США потребляет в 33 раза больше энергии, чем житель Индии, в 13 раз больше, чем китаец, в два с половиной раза больше, чем японец и вдвое больше, чем швед.

Количество солнечной энергии, попадающей на поверхность Земли, во много раз превышает ее расход даже в таких странах как США, где энергопотребление огромно. Если бы только 1% территории страны был использован для установки солнечного оборудования (фотоэлектрические батареи или солнечные системы для горячего водоснабжения), работающего с КПД 10%, то США были бы полностью обеспечены энергией. То же самое можно сказать и в отношении всех других развитых стран. Однако, в определенном смысле, это нереально - во-первых, из-за высокой стоимости фотоэлектрических систем, во-вторых, невозможно охватить такие большие территории солнечным оборудованием, не нанося вред экосистеме. Но сам принцип является верным.

Можно охватить ту же самую территорию, рассредоточив установки на крышах зданий, на домах, по обочинам, на заранее определенных участках земли и т.д. К тому же, во многих странах уже более 1% земли отведено под добычу, преобразование, производство и транспортировку энергии. И, поскольку большая часть этой энергии является не возобновляемой в масштабе существования человечества, этот вид производства энергии намного более вреден для окружающей среды, чем солнечные системы.

Включайся в дискуссию
Читайте также
О путях разрешения межнациональных конфликтов Причины межнациональных конфликтов и пути их решения
В каких единицах измеряется вязкость?
Око планеты информационно-аналитический портал Температура воды в природе